
Introduction to Hybrid Logic

Atelier Jeunes Chercheurs
Semaine Nancéienne de Sémantique Formelle

LORIA/INRIA Nancy-Grand Est
22 March 2010

Patrick Blackburn
patrick.blackburn@loria.fr

Goals of the course

This mini-course (or, more accurately, extended lecture) introduces
and explores hybrid logic, a form of modal logic in which it is possible
to name worlds (or times, or computational states, or situations, or
nodes in parse trees, or people — indeed, whatever it is that the
elements of Kripke Models are taken to represent).

The course has two main goals. The first is to convey, as clearly as
possible, the ideas and intuitions that have guided the development of
hybrid logic. The second is to gently hint at some technical themes,
such as the role of bisimulation and why hybrid logic is so useful proof
theoretically.

All that — and in only three hours too. . . !

To give a little more detail. . .

In today’s lecture we discuss:

• Orthodox modal logic — from an Amsterdam perspective.
• A problem with orthodox modal logic.
• Fixing this problem with basic hybrid logic.
• Why basic hybrid logic is genuinely modal: bisimulations.
• Why basic hybrid logic is good for your proof theory:

tableau systems.
• Flagging the here and now: the downarrow binder

Go to http://webloria.loria.fr/~blackbur/jsm.pdf for the slides;

there’s more in the slides than I am likely to cover in the lecture.

What is modal logic?

Slogan 1: Modal languages are simple yet expressive languages
for talking about relational structures.

Slogan 2: Modal languages provide an internal, local
perspective on relational structures.

Slogan 3: Modal languages are not isolated formal systems.

These slogans pretty much sum up the Amsterdam perspective
on modal logic.

Propositional Modal Logic

Given propositional symbols PROP = {p, q, r, . . .}, and modality
symbols MOD = {m,m′,m′′, . . .} the basic modal language (over
PROP and MOD) is defined as follows:

WFF := p | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ
| ϕ→ ψ | 〈m〉ϕ | [m]ϕ

If there’s just one modality symbol in the language, we usually write
♦ and � for its diamond and box forms.

[m]ϕ can be regarded as shorthand for ¬〈m〉¬ϕ. Sometimes useful to
add primitive atomic symbols > (true) and ⊥ (false).

Kripke Models

• A Kripke model M is a triple (W,R, V), where:
• W is a non-empty set, whose elements can be thought of

possible worlds, or epistemic states, or times, or states in a
transition system, or geometrical points, or people standing
in various relationships, or nodes in a parse tree — indeed,
pretty much anything you like.

• R is a collection of binary relation on W (one for each
modality)

• V is a valuation assigning subsets of W to propositional
symbols.

• The component (W,R) traditionally call a frame.

Satisfaction Definition

M, w
 p iff w ∈ V (p), where p ∈ PROP
M, w
 ¬ϕ iff M, w 6
 ϕ
M, w
 ϕ ∧ ψ iff M, w
 ϕ and M, w
 ψ
M, w
 ϕ ∨ ψ iff M, w
 ϕ or M, w
 ψ
M, w
 ϕ→ ψ iff M, w 6
 ϕ or M, w
 ψ
M, w
 〈m〉ϕ iff ∃w′(wRmw′ & M, w′
 ϕ)
M, w
 [m]ϕ iff ∀w′(wRmw′ ⇒ M, w′
 ϕ).

Note the internal perspective: we evaluate formulas inside
models, at particular states. Modal formulas are like little
creatures that explore models by moving between related
points. This is a key modal intuition, gives rise to the
notion of bisimulation, and is the driving force for at least
one traditional application.

Tense logic

• 〈f〉 means “at some Future state”, and 〈p〉 means “at
some Past state”.

• 〈p〉mia-unconscious is true iff we can look back in time
from the current state and see a state where Mia is
unconscious. Works a bit like the sentence Mia has been
unconscious.

• 〈f〉mia-unconscious requires us to scan the states that lie
in the future looking for one where Mia is unconscious.
Works a bit like the sentence Mia will be unconscious.

1

Feature logic

Consider the following Attribute Value Matrix (AVM): agreement

[
person 1st
number der

]
case −dative



This is a notational variant of the following modal formula:

〈agreement〉 (〈person〉 1st ∧ 〈number〉 singular)
∧ 〈case〉 ¬dative

Feature logic

Consider the following Attribute Value Matrix (AVM): agreement

[
person 1st
number der

]
case −dative


This is a notational variant of the following modal formula:

〈agreement〉 (〈person〉 1st ∧ 〈number〉 singular)
∧ 〈case〉 ¬dative

Description logic

And, moving into the heart of ordinary extensional logic,
consider the following ALC term:

killer u ∃employer.gangster

This means exactly the same thing as the modal formula:

killer ∧ 〈employer〉gangster

Description logic

And, moving into the heart of ordinary extensional logic,
consider the following ALC term:

killer u ∃employer.gangster

This means exactly the same thing as the modal formula:

killer ∧ 〈employer〉gangster

But there’s lots of other ways of talking about graphs

• There’s nothing magic about frames or Kripke models.

• Frames (W,R), are just a directed multigraphs (or labelled
transition systems).

• Valuations simply decorate states with properties.

• So a Kripke model for the basic modal language are just (very
simple) relational structures in the usual sense of first-order
model theory.

• So we don’t have to talk about Kripke models using modal logic
— we could use first-order logic, or second-order logic, or
infinitary logic, or fix-point logic, or indeed any logic interpreted
over relational structures.

• Let’s see how. . .

First-order logic for Kripke models

Suppose we have a Kripke model (W,R, V), for the modal
language over MOD and PROP. We talk about this model in
first-order logic by making use of the first-order language built
from the following symbols:

• For each propositional symbol p it has a unary predicate
symbol P. We’ll use V to interpret these predicate symbols.

• For each modality 〈r〉 , it has a binary relation symbol R.
We’ll use the binary relations in R to interpret these
symbols.

The first-order language built over these symbols is called the
first-order correspondence language (for the modal language
over MOD and PROP).

Doing it first-order style (I)

Consider the modal representation

〈f〉mia− unconscious

we could use instead the first-order representation

∃t(to<t ∧MIA−UNCONSCIOUS(t)).

Doing it first-order style (I)

Consider the modal representation

〈f〉mia− unconscious

we could use instead the first-order representation

∃t(to<t ∧MIA−UNCONSCIOUS(t)).

2

Doing it first-order style (II)

And consider the modal representation

killer ∧ 〈employer〉gangster

We could use instead the first-order representation

KILLER(x) ∧ ∃y(EMPLOYER(x, y) ∧ GANGSTER(y))

Doing it first-order style (II)

And consider the modal representation

killer ∧ 〈employer〉gangster

We could use instead the first-order representation

KILLER(x) ∧ ∃y(EMPLOYER(x, y) ∧ GANGSTER(y))

Standard Translation

And in fact, any modal representation can by converted into an
equi-satisfiable first-order representation:

stx(p) = Px
stx(¬ϕ) = ¬ stx(ϕ)
stx(ϕ ∧ ψ) = stx(ϕ) ∧ stx(ψ)
stx(〈R〉ϕ) = ∃y(Rxy ∧ sty(ϕ))

Note that stx(ϕ) always contains exactly one free variable (namely x).

Proposition: For any modal formula ϕ, any Kripke model M, and
any state w in M we have that: M, w
 ϕ iff M |= stx(ϕ)[x← w].

So aren’t we better off with first-order logic . . . ?

• We’ve just seen that any modal formula can be
systematically converted into an equi-satisfiable first-order
formula.

• And as we’ll later see, the reverse is not possible:
first-order logic can describe models in far more detail that
modal logic can. Some first-order formulas have no modal
equivalent. That is, modal languages are weaker than their
corresponding first-order languages.

• So why bother with modal logic?

Reasons for going modal

• Simplicity. The standard translation shows us that
modalities are essentially ‘macros’ encoding a
quantification over related states. Modal notation hides the
bound variables, resulting in a compact, easy to read,
representations.

• Computability. First-order logic is undecidable over
arbitrary models. Modal logic is decidable over arbitrary
models (indeed, decidable in PSPACE). Modal logic trades
expressivity for computability.

• Internal perspective. A natural way of thinking about
models. And taken seriously, leads to an elegant
characterization of what modal logic can say about models.
Let’s take a closer look. . .

Reasons for going modal

• Simplicity. The standard translation shows us that
modalities are essentially ‘macros’ encoding a
quantification over related states. Modal notation hides the
bound variables, resulting in a compact, easy to read,
representations.

• Computability. First-order logic is undecidable over
arbitrary models. Modal logic is decidable over arbitrary
models (indeed, decidable in PSPACE). Modal logic trades
expressivity for computability.

• Internal perspective. A natural way of thinking about
models. And taken seriously, leads to an elegant
characterization of what modal logic can say about models.
Let’s take a closer look. . .

Reasons for going modal

• Simplicity. The standard translation shows us that
modalities are essentially ‘macros’ encoding a
quantification over related states. Modal notation hides the
bound variables, resulting in a compact, easy to read,
representations.

• Computability. First-order logic is undecidable over
arbitrary models. Modal logic is decidable over arbitrary
models (indeed, decidable in PSPACE). Modal logic trades
expressivity for computability.

• Internal perspective. A natural way of thinking about
models. And taken seriously, leads to an elegant
characterization of what modal logic can say about models.
Let’s take a closer look. . .

Reasons for going modal

• Simplicity. The standard translation shows us that
modalities are essentially ‘macros’ encoding a
quantification over related states. Modal notation hides the
bound variables, resulting in a compact, easy to read,
representations.

• Computability. First-order logic is undecidable over
arbitrary models. Modal logic is decidable over arbitrary
models (indeed, decidable in PSPACE). Modal logic trades
expressivity for computability.

• Internal perspective. A natural way of thinking about
models. And taken seriously, leads to an elegant
characterization of what modal logic can say about models.
Let’s take a closer look. . .

3

Bisimulation (I)

The fundamental notion of equivalence between states for
modal logic.
Bisimulations are used in other disciplines besides modal logic.
Its role in all of them is to provide an appropriate notion of
equivalence.
Social Network Theory Here they capture the notion of two social
networks being functionally identical, even though they are not
isomorphic. It’s the configurations in which the agents stand in
various roles that render two social networks “the same”.
Theoretical Computer Science Here they embody the notion of
behavioural equivalence for processes.
Non-well-founded Set Theory Here they replace the
extensionality as the criterion of equality: two non-well-founded sets
(graphs) are equal iff they are bisimilar.

Bisimulation (I)

The fundamental notion of equivalence between states for
modal logic.
Bisimulations are used in other disciplines besides modal logic.
Its role in all of them is to provide an appropriate notion of
equivalence.
Social Network Theory Here they capture the notion of two social
networks being functionally identical, even though they are not
isomorphic. It’s the configurations in which the agents stand in
various roles that render two social networks “the same”.
Theoretical Computer Science Here they embody the notion of
behavioural equivalence for processes.
Non-well-founded Set Theory Here they replace the
extensionality as the criterion of equality: two non-well-founded sets
(graphs) are equal iff they are bisimilar.

Bisimulation (II)

Let M = (W,R, V) and M′ = (W ′,R′, V ′) be models for the
same basic modal language. A relation Z ⊆W ×W ′ is a
bisimulation between M and M′ if the following conditions are
met:

1. Atomic harmony: if wZw′ then w ∈ V (p) iff w′ ∈ V ′(p), for
all propositional symbols p.

2. Forth: if wZw′ and wRv then there is a v′ such that w′R′v′

and vZv′.
3. Back: if wZw′ and w′R′v′ then there is a v such that wRv

and vZv′.

Bisimulation (II)

Let M = (W,R, V) and M′ = (W ′,R′, V ′) be models for the
same basic modal language. A relation Z ⊆W ×W ′ is a
bisimulation between M and M′ if the following conditions are
met:

1. Atomic harmony: if wZw′ then w ∈ V (p) iff w′ ∈ V ′(p), for
all propositional symbols p.

2. Forth: if wZw′ and wRv then there is a v′ such that w′R′v′

and vZv′.
3. Back: if wZw′ and w′R′v′ then there is a v such that wRv

and vZv′.

Bisimulation (II)

Let M = (W,R, V) and M′ = (W ′,R′, V ′) be models for the
same basic modal language. A relation Z ⊆W ×W ′ is a
bisimulation between M and M′ if the following conditions are
met:

1. Atomic harmony: if wZw′ then w ∈ V (p) iff w′ ∈ V ′(p), for
all propositional symbols p.

2. Forth: if wZw′ and wRv then there is a v′ such that w′R′v′

and vZv′.

3. Back: if wZw′ and w′R′v′ then there is a v such that wRv
and vZv′.

Bisimulation (II)

Let M = (W,R, V) and M′ = (W ′,R′, V ′) be models for the
same basic modal language. A relation Z ⊆W ×W ′ is a
bisimulation between M and M′ if the following conditions are
met:

1. Atomic harmony: if wZw′ then w ∈ V (p) iff w′ ∈ V ′(p), for
all propositional symbols p.

2. Forth: if wZw′ and wRv then there is a v′ such that w′R′v′

and vZv′.
3. Back: if wZw′ and w′R′v′ then there is a v such that wRv

and vZv′.

Modal formulas are invariant under bisimulation

Proposition: Let M = (W,R, V) and M′ = (W ′,R′, V ′) be
models for the same basic modal language, and let Z be a
bisimulation between M and M′. Then for all modal formulas
ϕ, and all points w in M and w′ in M such that w is bisimilar
to w′:

M, w
 ϕ iff M′, w′
 ϕ.

In words: bisimilar points are modally equivalent, or to put it
another way: modal formulas are invariant under bisimulations.

Proof: Induction on the structure of ϕ.

Not all first-order formulas are bisimulation invariant

• A first-order formula in one free variable ϕ(x) is
bisimulation-invariant if for all bisimulations Z between
models M and M′, if wZw′ then M |= ϕ[w] iff
M′ |= ϕ[w′].

• Not all first-order formulas are bisimulation invariant
(which shows that not all first-order formulas can be
translated into modal formulas).

• But bisimulation invariance seems to be a natural property
in various domains, so it is natural to ask: precisely which
first-order formulas are bisimulation invariant? The answer
is elegant . . .

4

The van Benthem Characterization Theorem

For all first-order formulas ϕ (in the correspondence language)
containing exactly one free variable, ϕ is bisimulation-invariant
iff ϕ is equivalent to the standard translation of a modal
formula.
In short, modal logic is a simple notation for capturing exactly
the bisimulation-invariant fragment of first-order logic.

Proof:
(⇒) Immediate from the invariance of modal formula under
bisimulation.
(⇐) Non-trivial (usually proved using elementary chains or by
appealing to the existence of saturated models).

Back to slogan 3

Slogan 3: Modal languages are not isolated formal systems.

Modal languages over models are essentially simple fragments of
first-order logic. These fragments have a number of attractive
properties such as robust decidability and bisimulation
invariance. Traditional modal notation is essentially a nice
(quantifier free) ‘macro’ notation for working with this
fragment.

Back to slogan 2

Slogan 2: Modal languages provide an internal, local
perspective on relational structures.

This is not just an intuition: the notion of bisimulation, and the
results associated with it, shows that this is the key model
theoretic fact at work in modal logic.

Back to slogan 1

Slogan 1: Modal languages are simple yet expressive languages
for talking about relational structures.

You can use modal logic for just about anything. Anywhere you
see a graph, you can use a modal language to talk about it.

That was the good news — now comes the bad

Orthodox modal languages have an obvious drawback for many
applications: they don’t let us refer to individual states (worlds,
times, situations, nodes, . . .). That is, they don’t allow us to
say things like
• this happened there; or
• this happened then; or
• this state has property ϕ; or
• node i is marked with the information p.

and so on.

Temporal logic

• Temporal representations in Artificial Intelligence (such as
Allen’s system, and the situation calculus) based around
temporal reference — and for good reasons.

• Worse, standard modal logics of time are completely
inadequate for the temporal semantics of natural language.
Vincent accidentally squeezed the trigger doesn’t mean that
at some completely unspecified past time Vincent did in
fact accidentally squeeze the trigger, it means that at some
particular, contextually determined, past time he did so.
The representation,
〈p〉 vincent− accidentally − squeeze− trigger fails to
capture this.

Tense in text

Vincent woke up. Something felt very wrong. Vincent reached
under his pillow for his Uzi.

The states described by the first two sentences hold at the same
time. The event described by the second takes place a little
later. In orthodox modal logics there is no way assert the
identity of the times needed for the first two sentences, nor to
capture the move forward in time needed by the third.

In fact, for this reason modal languages for temporal
representation have not been the tool of choice in natural
language semantics for over 15 years.

Feature logic

As we’ve mentioned, the following Attribute Value Matrix
(AVM):  agreement

[
person 1st
number plural

]
case −dative


is a notational variant of the following modal formula:

〈agreement〉 (〈person〉 1st ∧ 〈number〉plural)
∧ 〈case〉 ¬dative

5

Feature logic

But full AVM notation is richer. It can assert re-entrancies: subj 1
[

agr foo
pred bar

]
comp [subj 1]


This cannot be captured in orthodox modal logic.

Description logic I

As we have already said, there is a transparent correspondence
between simple DL terms and modal formulas:

killer u ∃employer.gangster

killer ∧ 〈employer〉gangster

Nonetheless, this correspondence only involves what description
logicians call the TBox (Terminological Box).

Description logic II

Orthodox modal logic does not have anything to say about the
ABox (Assertional Box):

mia : Beautiful

(jules, vincent) : Friends

That is, it can’t make assertions about individuals, for it has no
tools for naming individuals.

Ambition

• Want to be able to refer to states, but want to do so
without destroying the simplicity of propositional modal
logic.

• But how can we do this — propositional modal logic has
very few moving parts?

• Answer: sort the atomic symbols. Use formulas as terms.
• This will fix the obvious shortcoming — and as we shall

learn, it will fix a lot more besides.

Extension #1

• Take a language of basic modal logic (with propositional
variables p, q, r, and so on) and add a second sort of atomic
formula.

• The new atoms are called nominals, and are typically written i,
j, k, and l.

• Both types of atom can be freely combined to form more
complex formulas in the usual way; for example,

♦(i ∧ p) ∧ ♦(i ∧ q)→ ♦(p ∧ q)

is a well formed formula.

• Insist that each nominal be true at exactly one world in any
model. A nominal names a state by being true there and
nowhere else.

We already have a richer logic

Consider the orthodox formula

♦(r ∧ p) ∧ ♦(r ∧ q)→ ♦(p ∧ q)

This is easy to falsify.

On the other hand, the hybrid formula

♦(i ∧ p) ∧ ♦(i ∧ q)→ ♦(p ∧ q)

is valid (unfalsifiable). Nominals name, and this adds to the
expressive power at our disposal.

We already have a richer logic

Consider the orthodox formula

♦(r ∧ p) ∧ ♦(r ∧ q)→ ♦(p ∧ q)

This is easy to falsify.

On the other hand, the hybrid formula

♦(i ∧ p) ∧ ♦(i ∧ q)→ ♦(p ∧ q)

is valid (unfalsifiable). Nominals name, and this adds to the
expressive power at our disposal.

Extension #2

• Add formulas of form @iϕ.
• Such formulas assert that ϕ is satisfied at the point named

by the nominal i.
• Expressions of the form @i are called satisfaction operators.

Let’s make these ideas precise . . .

6

Syntax

• Given ordinary propositional symbols PROP = {p, q, r, . . .},
and modalities MOD, let NOM = {i, j, k, l, . . .} be a
nonempty set disjoint from PROP.

• The elements of NOM are called nominals; they are second
sort of atomic symbol which will be used to name states. g
The basic hybrid language (over PROP, MOD and NOM)
is defined as follows:

WFF := i | p | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ
| ϕ→ ψ | 〈m〉ϕ | [m]ϕ | @iϕ

Semantics

• As before, a model M is a triple (W,R, V).
• As before, (W,R) is just a frame (a labelled transition

system).
• The difference lies in V . Now a valuation V is a function

with domain PROP∪NOM and range Pow(W) such that
for all i ∈ NOM, V (i) is a singleton subset of W .

• That is, a valuation makes each nominal true at a unique
state; the nominal labels this state by being true there and
nowhere else.

• We call the unique state w that belongs to V (i) the
denotation of i under V .

Satisfaction Definition

M, w
 a iff w ∈ V (a), where a ∈ PROP ∪NOM
M, w
 ¬ϕ iff M, w 6
 ϕ
M, w
 ϕ ∧ ψ iff M, w
 ϕ and M, w
 ψ
M, w
 ϕ ∨ ψ iff M, w
 ϕ or M, w
 ψ
M, w
 ϕ→ ψ iff M, w 6
 ϕ or M, w
 ψ
M, w
 〈m〉ϕ iff ∃w′(wRmw′ & M, w′
 ϕ)
M, w
 [m]ϕ iff ∀w′(wRmw′ ⇒ M, w′
 ϕ).
M, w
 @iϕ iff M, i
 ϕ, where i is the

denotation of i under V.

Tense logic

• On the road to capturing AI temporal representation
formalisms such as Allen’s logic of temporal reference; @
can play the role of Holds.

• And we can now handle natural language examples more
convincingly: 〈P〉(i∧Vincent-accidentally-squeeze-the-trigger)
locates the trigger-squeezing not merely in the past, but at
a specific temporal state there, namely the one named by i
— capturing the meaning of Vincent accidentally squeezed
the trigger. Let’s take this a little further. . .

Reichenbach in hybrid logic

Structure Name English example Representation

E–R–S Pluperfect I had seen 〈p〉 (i ∧ 〈p〉φ)
E,R–S Past I saw 〈p〉 (i ∧ φ)
R–E–S Future-in-the-past I would see 〈p〉 (i ∧ 〈f〉φ)
R–S,E Future-in-the-past I would see 〈p〉 (i ∧ 〈f〉φ)
R–S–E Future-in-the-past I would see 〈p〉 (i ∧ 〈f〉φ)
E–S,R Perfect I have seen 〈p〉φ
S,R,E Present I see φ
S,R–E Prospective I am going to see 〈f〉φ
S–E–R Future perfect I will have seen 〈f〉 (i ∧ 〈p〉φ)
S,E–R Future perfect I will have seen 〈f〉 (i ∧ 〈p〉φ)
E–S–R Future perfect I will have seen 〈f〉 (i ∧ 〈p〉φ)
S–R,E Future I will see 〈f〉 (i ∧ φ)
S–R–E Future-in-the-future (Latin: abiturus ero) 〈f〉 (i ∧ 〈f〉φ)

Tense in text

Vincent woke up. Something felt very wrong. Vincent reached
under his pillow for his Uzi.

P (i ∧ vincent-wake-up)

∧ P (j ∧ something-feel-very-wrong) ∧ @ji

∧ P (k ∧ vincent-reach-under-pillow-for-uzi) ∧ @kPi

Tense in text

Vincent woke up. Something felt very wrong. Vincent reached
under his pillow for his Uzi.

P (i ∧ vincent-wake-up)

∧ P (j ∧ something-feel-very-wrong) ∧ @ji

∧ P (k ∧ vincent-reach-under-pillow-for-uzi) ∧ @kPi

Tense in text

Vincent woke up. Something felt very wrong. Vincent reached
under his pillow for his Uzi.

P (i ∧ vincent-wake-up)

∧ P (j ∧ something-feel-very-wrong)

∧ @ji

∧ P (k ∧ vincent-reach-under-pillow-for-uzi) ∧ @kPi

7

Tense in text

Vincent woke up. Something felt very wrong. Vincent reached
under his pillow for his Uzi.

P (i ∧ vincent-wake-up)

∧ P (j ∧ something-feel-very-wrong) ∧ @ji

∧ P (k ∧ vincent-reach-under-pillow-for-uzi) ∧ @kPi

Tense in text

Vincent woke up. Something felt very wrong. Vincent reached
under his pillow for his Uzi.

P (i ∧ vincent-wake-up)

∧ P (j ∧ something-feel-very-wrong) ∧ @ji

∧ P (k ∧ vincent-reach-under-pillow-for-uzi)

∧ @kPi

Tense in text

Vincent woke up. Something felt very wrong. Vincent reached
under his pillow for his Uzi.

P (i ∧ vincent-wake-up)

∧ P (j ∧ something-feel-very-wrong) ∧ @ji

∧ P (k ∧ vincent-reach-under-pillow-for-uzi) ∧ @kPi

Feature logic

 subj 1
[

agr foo
pred bar

]
comp [subj 1]


This corresponds to the following hybrid wff:

〈subj〉 (i ∧ 〈agr〉 foo ∧ 〈pred〉 〉bar)
∧ 〈comp〉 〈subj〉 i

Description logic (I)

We can now make ABox statements. For example, to capture
the effect of the (conceptual) ABox assertion

mia : Beautiful

we can write
@miaBeautiful

Description logic (II)

Similarly, to capture the effect of the (relational) ABox assertion

(jules, vincent) : Friends

we can write
@jules〈Friends〉vincent

Basic hybrid language clearly modal

Neither syntactical nor computational simplicity, nor general
‘style’ of modal logic, has been compromised.

• Nominals just atomic formulas.
• Satisfaction operators are normal modal operators. That

is, for any nominal i we have that:
• @i(ϕ→ ψ)→ (@iϕ→ @iψ) is valid.
• If ϕ is valid, then so is @iϕ.

• Indeed, satisfaction operators are even self-dual modal
operators: @iφ and ¬@i¬φ say exactly the same thing.

Basic hybrid logic is computable

Enriching ordinary propositional modal logic with both
nominals and satisfaction operators does not effect
computability. The basic hybrid logic is decidable. Indeed we
even have:

Theorem: The satisfiability problem for basic hybrid
languages over arbitrary models is pspace-complete (Areces,
Blackburn, and Marx).

That is (up to a polynomial) the hybridized language has the
same complexity as the orthodox modal language we started
with.

8

Standard Translation

Any basic hybrid formula can by converted into an equi-satisfiable
first-order formula. All we have to do is add a first-order constant (or
variable) i for each nominal i and translate as follows (note the use of
equality):

stx(p) = Px
stx(i) = (i = x)
stx(¬ϕ) = ¬ stx(ϕ)
stx(ϕ ∧ ψ) = stx(ϕ) ∧ stx(ψ)
stx(〈R〉ϕ) = ∃y(Rxy ∧ sty(ϕ))
stx(@iϕ) = sti(ϕ)

Note that stx(ϕ) always contains at most free variable (namely x).
Proposition: For any basic hybrid formula ϕ, any Kripke model M,
and any state w in M we have that:
M, w
 ϕ iff M |= stx(ϕ)[x← w].

Basic hybrid logic can specify Robinson Diagrams

• @ip says that the states labelled i bears the information p, while
¬@ip denies this. That is, we can specify how atomic properties
are distributed modally.

• @ij says that the states labelled i and j are identical, while ¬@ij
says they are distinct. That is, we can specify theories of state
equality modally.

• @i♦j says that the state labelled j is a successor of the state
labelled i, and ¬@i♦j denies this. That is, we can specify
theories of state succession modally.

That is, we have all the tools needed to completely describe models
(that is, what model theorists call Robinson diagrams). This makes
life very straightforward when it comes to proving completeness and
interpolation results.

Basic hybrid logic can specify Robinson Diagrams

• @ip says that the states labelled i bears the information p, while
¬@ip denies this. That is, we can specify how atomic properties
are distributed modally.

• @ij says that the states labelled i and j are identical, while ¬@ij
says they are distinct. That is, we can specify theories of state
equality modally.

• @i♦j says that the state labelled j is a successor of the state
labelled i, and ¬@i♦j denies this. That is, we can specify
theories of state succession modally.

That is, we have all the tools needed to completely describe models
(that is, what model theorists call Robinson diagrams). This makes
life very straightforward when it comes to proving completeness and
interpolation results.

Basic hybrid logic can specify Robinson Diagrams

• @ip says that the states labelled i bears the information p, while
¬@ip denies this. That is, we can specify how atomic properties
are distributed modally.

• @ij says that the states labelled i and j are identical, while ¬@ij
says they are distinct. That is, we can specify theories of state
equality modally.

• @i♦j says that the state labelled j is a successor of the state
labelled i, and ¬@i♦j denies this. That is, we can specify
theories of state succession modally.

That is, we have all the tools needed to completely describe models
(that is, what model theorists call Robinson diagrams). This makes
life very straightforward when it comes to proving completeness and
interpolation results.

Basic hybrid logic can specify Robinson Diagrams

• @ip says that the states labelled i bears the information p, while
¬@ip denies this. That is, we can specify how atomic properties
are distributed modally.

• @ij says that the states labelled i and j are identical, while ¬@ij
says they are distinct. That is, we can specify theories of state
equality modally.

• @i♦j says that the state labelled j is a successor of the state
labelled i, and ¬@i♦j denies this. That is, we can specify
theories of state succession modally.

That is, we have all the tools needed to completely describe models
(that is, what model theorists call Robinson diagrams). This makes
life very straightforward when it comes to proving completeness and
interpolation results.

Basic hybrid logic can specify Robinson Diagrams

• @ip says that the states labelled i bears the information p, while
¬@ip denies this. That is, we can specify how atomic properties
are distributed modally.

• @ij says that the states labelled i and j are identical, while ¬@ij
says they are distinct. That is, we can specify theories of state
equality modally.

• @i♦j says that the state labelled j is a successor of the state
labelled i, and ¬@i♦j denies this. That is, we can specify
theories of state succession modally.

That is, we have all the tools needed to completely describe models
(that is, what model theorists call Robinson diagrams). This makes
life very straightforward when it comes to proving completeness and
interpolation results.

But what is basic hybrid logic?

We have seen many examples of what basic hybrid logic can do
in various applications.

We’ve also seen that a number of the properties we liked about
modal logic are inherited by the basic hybrid language.

This is all very nice — but none of it gives us a clear
mathematical characterization of what basic hybrid logic
actually is.

And it is possible to give such a characterization, and a
genuinely modal one at that. Let’s take a look . . .

Bisimulation-with-constants

Let M = (W,R, V) and M′ = (W ′,R′, V ′) be models for the
same basic hybrid language. A relation Z ⊆W ×W ′ is a
bisimulation-with-constants between M and M′ if the following
conditions are met:

1. Atomic harmony: if wZw′ then w ∈ V (p) iff w′ ∈ V ′(p), for
all propositional symbols p, and all nominals i.

2. Forth: if wZw′ and wRv then there is a v′ such that w′R′v′

and vZv′.
3. Back: if wZw′ and w′R′v′ then there is a v such that wRv

and vZv′.
4. All points named by nominals are related by Z.

9

Bisimulation-with-constants

Let M = (W,R, V) and M′ = (W ′,R′, V ′) be models for the
same basic hybrid language. A relation Z ⊆W ×W ′ is a
bisimulation-with-constants between M and M′ if the following
conditions are met:

1. Atomic harmony: if wZw′ then w ∈ V (p) iff w′ ∈ V ′(p), for
all propositional symbols p, and all nominals i.

2. Forth: if wZw′ and wRv then there is a v′ such that w′R′v′

and vZv′.
3. Back: if wZw′ and w′R′v′ then there is a v such that wRv

and vZv′.
4. All points named by nominals are related by Z.

Basic hybrid formulas are invariant under
bisimulations-with-constants

Proposition: Let M = (W,R, V) and M′ = (W ′,R′, V ′) be
models for the same basic hybrid language, and let Z be a
bisimulation-with-constants between M and M′. Then for all
basic hybrid formulas ϕ, and all points w in M and w′ in M
such that w is bisimilar to w′:

M, w
 ϕ iff M′, w′
 ϕ.

Proof: Induction on the structure of ϕ.

Lifting the van Benthem Characterization theorem

For all first-order formulas ϕ (in the correspondence language with
constants and equality) containing at most one free variable, ϕ is
bisimulation-with-constants invariant iff ϕ is equivalent to the
standard translation of a basic hybrid formula iff (Areces, Blackburn,
ten Cate, and Marx)

In short, basic hybrid logic is a simple notation for capturing exactly
the bisimulation-invariant fragment of first-order logic when we make
use of constants and equality.

Proof:
(⇒) Immediate from the invariance of hybrid formulas under
bisimulation.
(⇐) Can be proved using elementary chains or by appealing to
the existence of saturated models.

Summing up . . .

• We learned about some of the good points of orthodox
modal logic, but also saw that it’s inability to refer to
states is a weakness for various applications.

• We saw that adding nominals and satisfaction operators
fixes these weaknesses without sacrificing what we liked
about modal logic in the first place. Basic hybrid logic is a
natural generalization of orthodox modal logic.

• But as we shall soon learn, hybridization has fixed some
less obvious shortcomings of orthodox modal logic too. In
particular, it has given us a logical formalism that is is easy
to use deductively — as we shall see after a break!

Summing up . . .

• We learned about some of the good points of orthodox
modal logic, but also saw that it’s inability to refer to
states is a weakness for various applications.

• We saw that adding nominals and satisfaction operators
fixes these weaknesses without sacrificing what we liked
about modal logic in the first place. Basic hybrid logic is a
natural generalization of orthodox modal logic.

• But as we shall soon learn, hybridization has fixed some
less obvious shortcomings of orthodox modal logic too. In
particular, it has given us a logical formalism that is is easy
to use deductively — as we shall see after a break!

Hybrid deduction

Let’s continue with an example-driven introduction to hybrid
deduction. We concentrate on tableau systems. We shall:

• Discuss the goals and problems of orthodox modal
deduction.

• Present a hybrid tableau system for reasoning about
arbitrary models.

• Show how this can be extended to hybrid tableau systems
for special classes of models.

• Round off by discussing further themes in hybrid
deduction, including their implementation.

Different models, different logics

Key fact about modal logic: when you work with different kinds
of models (graphs) the logic typically changes. For example:

• �p ∧�q→ �(p ∧ q) is valid on all models: it’s part of the
basic, universally applicable, logic.

• But ♦♦p→ ♦p is only valid on transitive graphs. It’s not
part of the basic logic, rather it’s part of the special
(stronger) logic that we need to use when working with
transitive models.

Modal deduction should be general

• Quite rightly, modal logicians have insisted on developing
proof methods which are general — that is, which can be
easily adapted to cope with the logics of many kinds of
models (transitive, reflexive, symmetric, dense, and so on).

• They achieve this goal by making use of Hilbert-style
systems (that is, axiomatic systems).

• There is a basic axiomatic systems (called K) for dealing
with arbitrary models.

• To deal with special classes of models, further axioms are
added to K. For example, adding ♦♦p→ ♦p as an axiom
gives us the logic of transitive frames.

10

Generality clashes with easy of use

• Unfortunately, Hilbert systems are hard to use and
completely unsuitable for computational implementation.

• For ease of use we want (say) natural deduction systems or
tableau systems. For computational implementation we
want (say) resolution systems or tableau systems.

• But it is hard to develop tableau, or natural deduction, or
resolution in a general way in orthodox modal logic.

• Why is this?

Getting behind the diamonds

• The difficulty is extracting information from under the
scope of diamonds.

• That is, given ♦ϕ, how do we lay hands on ϕ? And given
¬�ϕ (that is, ♦¬ϕ), how do we lay hands on ¬ϕ?

• In first order logic, the analogous problem is trivial. There
is a simple rule for stripping away existential quantifiers:
from ∃xϕ we conclude ϕ[x← a] for some brand new
constant a (this rule is usually called Existential
Elimination).

• But in orthodox modal logic there is no simple way of
stripping off the diamonds.

Hybrid deduction

• Hybrid deduction is based on a simple observation: it’s easy
to get at the information under the scope of diamonds —
for there is an natural way of stripping the diamonds away.

• We shall explore this idea in the setting of tableau — but
it can (and has been) used in a variety of proof styles,
including resolution and natural deduction.

• Moreover, once the tableau system for reasoning about
arbitrary models has been defined, it is straightforward to
extend it to to cover the logics of special classes of models.
That is, hybridization enables us to achieve the traditional
modal goal of generality without resorting to
Hilbert-systems.

Moreover. . .

Hybrid reasoning is arguably quite natural.

In what follows we shall sometimes give an informal proof
before we give the tableau proof. As we shall see, our tableau
proofs mimic the informal reasoning fairly closely.

Hip and cute

Consider the following statement:

If everyone you hate is hip, and someone you hate is
cute, then someone you hate is both hip and cute.

We can represent it as follows:

[hate] hip ∧ 〈hate〉 cute→ 〈hate〉 (hip ∧ cute)

This is a valid statement, and it’s validity is easy to establish
informally. . .

Informal argument

• Suppose “If everyone you hate is hip, and someone you
hate is cute, then someone you hate is both hip and cute”
is not true.

• Then everyone you hate is hip, and someone you hate is
cute. However no one you hate is both hip and cute.

• So there is someone that you hate (let’s call him Jim) who
is cute.

• But as Jim is someone you hate, he be hip as well as cute
(for everyone you hate is hip).

• But Jim can’t be both hip and cute (for no one you hate is
both hip and cute). Contradiction!. So the original
statement was true after all.

Informal argument

• Suppose “If everyone you hate is hip, and someone you
hate is cute, then someone you hate is both hip and cute”
is not true.

• Then everyone you hate is hip, and someone you hate is
cute. However no one you hate is both hip and cute.

• So there is someone that you hate (let’s call him Jim) who
is cute.

• But as Jim is someone you hate, he be hip as well as cute
(for everyone you hate is hip).

• But Jim can’t be both hip and cute (for no one you hate is
both hip and cute). Contradiction!. So the original
statement was true after all.

Informal argument

• Suppose “If everyone you hate is hip, and someone you
hate is cute, then someone you hate is both hip and cute”
is not true.

• Then everyone you hate is hip, and someone you hate is
cute. However no one you hate is both hip and cute.

• So there is someone that you hate (let’s call him Jim) who
is cute.

• But as Jim is someone you hate, he be hip as well as cute
(for everyone you hate is hip).

• But Jim can’t be both hip and cute (for no one you hate is
both hip and cute). Contradiction!. So the original
statement was true after all.

11

Informal argument

• Suppose “If everyone you hate is hip, and someone you
hate is cute, then someone you hate is both hip and cute”
is not true.

• Then everyone you hate is hip, and someone you hate is
cute. However no one you hate is both hip and cute.

• So there is someone that you hate (let’s call him Jim) who
is cute.

• But as Jim is someone you hate, he be hip as well as cute
(for everyone you hate is hip).

• But Jim can’t be both hip and cute (for no one you hate is
both hip and cute). Contradiction!. So the original
statement was true after all.

Informal argument

• Suppose “If everyone you hate is hip, and someone you
hate is cute, then someone you hate is both hip and cute”
is not true.

• Then everyone you hate is hip, and someone you hate is
cute. However no one you hate is both hip and cute.

• So there is someone that you hate (let’s call him Jim) who
is cute.

• But as Jim is someone you hate, he be hip as well as cute
(for everyone you hate is hip).

• But Jim can’t be both hip and cute (for no one you hate is
both hip and cute). Contradiction!. So the original
statement was true after all.

Informal argument

• Suppose “If everyone you hate is hip, and someone you
hate is cute, then someone you hate is both hip and cute”
is not true.

• Then everyone you hate is hip, and someone you hate is
cute. However no one you hate is both hip and cute.

• So there is someone that you hate (let’s call him Jim) who
is cute.

• But as Jim is someone you hate, he be hip as well as cute
(for everyone you hate is hip).

• But Jim can’t be both hip and cute (for no one you hate is
both hip and cute). Contradiction!. So the original
statement was true after all.

[hate] hip ∧ 〈hate〉 cute→ 〈hate〉 (hip ∧ cute)

1 ¬@i([hate] h ∧ 〈hate〉 c→ 〈hate〉 (h ∧ c))
2 @i([hate] h ∧ 〈hate〉 c)
2′ ¬@i〈hate〉 (h ∧ c)
3 @i[hate] h
3′ @i〈hate〉 c
4 @i〈hate〉 j
4′ @jc
5 @jh
6 ¬@j(h ∧ c)
7 ¬@jh ¬@jc
⊥5,7 ⊥4′,7

[hate] hip ∧ 〈hate〉 cute→ 〈hate〉 (hip ∧ cute)

1 ¬@i([hate] h ∧ 〈hate〉 c→ 〈hate〉 (h ∧ c))

2 @i([hate] h ∧ 〈hate〉 c)
2′ ¬@i〈hate〉 (h ∧ c)
3 @i[hate] h
3′ @i〈hate〉 c
4 @i〈hate〉 j
4′ @jc
5 @jh
6 ¬@j(h ∧ c)
7 ¬@jh ¬@jc
⊥5,7 ⊥4′,7

[hate] hip ∧ 〈hate〉 cute→ 〈hate〉 (hip ∧ cute)

1 ¬@i([hate] h ∧ 〈hate〉 c→ 〈hate〉 (h ∧ c))
2 @i([hate] h ∧ 〈hate〉 c)
2′ ¬@i〈hate〉 (h ∧ c)

3 @i[hate] h
3′ @i〈hate〉 c
4 @i〈hate〉 j
4′ @jc
5 @jh
6 ¬@j(h ∧ c)
7 ¬@jh ¬@jc
⊥5,7 ⊥4′,7

[hate] hip ∧ 〈hate〉 cute→ 〈hate〉 (hip ∧ cute)

1 ¬@i([hate] h ∧ 〈hate〉 c→ 〈hate〉 (h ∧ c))
2 @i([hate] h ∧ 〈hate〉 c)
2′ ¬@i〈hate〉 (h ∧ c)
3 @i[hate] h
3′ @i〈hate〉 c

4 @i〈hate〉 j
4′ @jc
5 @jh
6 ¬@j(h ∧ c)
7 ¬@jh ¬@jc
⊥5,7 ⊥4′,7

[hate] hip ∧ 〈hate〉 cute→ 〈hate〉 (hip ∧ cute)

1 ¬@i([hate] h ∧ 〈hate〉 c→ 〈hate〉 (h ∧ c))
2 @i([hate] h ∧ 〈hate〉 c)
2′ ¬@i〈hate〉 (h ∧ c)
3 @i[hate] h
3′ @i〈hate〉 c
4 @i〈hate〉 j
4′ @jc

5 @jh
6 ¬@j(h ∧ c)
7 ¬@jh ¬@jc
⊥5,7 ⊥4′,7

12

[hate] hip ∧ 〈hate〉 cute→ 〈hate〉 (hip ∧ cute)

1 ¬@i([hate] h ∧ 〈hate〉 c→ 〈hate〉 (h ∧ c))
2 @i([hate] h ∧ 〈hate〉 c)
2′ ¬@i〈hate〉 (h ∧ c)
3 @i[hate] h
3′ @i〈hate〉 c
4 @i〈hate〉 j
4′ @jc
5 @jh

6 ¬@j(h ∧ c)
7 ¬@jh ¬@jc
⊥5,7 ⊥4′,7

[hate] hip ∧ 〈hate〉 cute→ 〈hate〉 (hip ∧ cute)

1 ¬@i([hate] h ∧ 〈hate〉 c→ 〈hate〉 (h ∧ c))
2 @i([hate] h ∧ 〈hate〉 c)
2′ ¬@i〈hate〉 (h ∧ c)
3 @i[hate] h
3′ @i〈hate〉 c
4 @i〈hate〉 j
4′ @jc
5 @jh
6 ¬@j(h ∧ c)

7 ¬@jh ¬@jc
⊥5,7 ⊥4′,7

[hate] hip ∧ 〈hate〉 cute→ 〈hate〉 (hip ∧ cute)

1 ¬@i([hate] h ∧ 〈hate〉 c→ 〈hate〉 (h ∧ c))
2 @i([hate] h ∧ 〈hate〉 c)
2′ ¬@i〈hate〉 (h ∧ c)
3 @i[hate] h
3′ @i〈hate〉 c
4 @i〈hate〉 j
4′ @jc
5 @jh
6 ¬@j(h ∧ c)
7 ¬@jh ¬@jc

⊥5,7 ⊥4′,7

[hate] hip ∧ 〈hate〉 cute→ 〈hate〉 (hip ∧ cute)

1 ¬@i([hate] h ∧ 〈hate〉 c→ 〈hate〉 (h ∧ c))
2 @i([hate] h ∧ 〈hate〉 c)
2′ ¬@i〈hate〉 (h ∧ c)
3 @i[hate] h
3′ @i〈hate〉 c
4 @i〈hate〉 j
4′ @jc
5 @jh
6 ¬@j(h ∧ c)
7 ¬@jh ¬@jc
⊥5,7

⊥4′,7

[hate] hip ∧ 〈hate〉 cute→ 〈hate〉 (hip ∧ cute)

1 ¬@i([hate] h ∧ 〈hate〉 c→ 〈hate〉 (h ∧ c))
2 @i([hate] h ∧ 〈hate〉 c)
2′ ¬@i〈hate〉 (h ∧ c)
3 @i[hate] h
3′ @i〈hate〉 c
4 @i〈hate〉 j
4′ @jc
5 @jh
6 ¬@j(h ∧ c)
7 ¬@jh ¬@jc
⊥5,7 ⊥4′,7

Internalizing Labelled Deduction

¬ rules
@i¬ϕ
¬@iϕ

¬@i¬ϕ
@iϕ

∧ rules
@i(ϕ ∧ ψ)

@iϕ
@iψ

¬@i(ϕ ∧ ψ)
¬@iϕ ¬@iψ

@ rules
@i@jϕ

@jϕ

¬@i@jϕ

¬@jϕ

Extracting information from modal contexts

In the statement of these rules we write j to indicate a nominal
new to the branch where the rule is being applied.

♦ rules
@i〈r〉ϕ
@i〈r〉 j

¬@i〈r〉ϕ @i〈r〉 k
¬@kϕ

@jϕ

� rules
@i[r]ϕ @i〈r〉 k

@kϕ
¬@i[r]ϕ
@i〈r〉 j
¬@jϕ

Extracting information from modal contexts

In the statement of these rules we write j to indicate a nominal
new to the branch where the rule is being applied.

♦ rules
@i〈r〉ϕ
@i〈r〉 j

¬@i〈r〉ϕ @i〈r〉 k
¬@kϕ

@jϕ

� rules
@i[r]ϕ @i〈r〉 k

@kϕ
¬@i[r]ϕ
@i〈r〉 j
¬@jϕ

13

Extracting information from modal contexts

In the statement of these rules we write j to indicate a nominal
new to the branch where the rule is being applied.

♦ rules
@i〈r〉ϕ
@i〈r〉 j

¬@i〈r〉ϕ @i〈r〉 k
¬@kϕ

@jϕ

� rules
@i[r]ϕ @i〈r〉 k

@kϕ
¬@i[r]ϕ
@i〈r〉 j
¬@jϕ

Link with first-order deduction (Studio Version)

• The hybrid rule from @i♦ϕ conclude @i♦j and @jϕ is
essentially the first-order rule of Existential Elimination
(from ∃xϕ conclude ϕ[x← j]).

• Recall that (via the Standard Translation) we know that
♦ϕ is shorthand for ∃y(Riy ∧ sty(ϕ)).

• Applying Existential Elimination to this yields
Rij ∧ stj(ϕ). But this is just @i♦j ∧@jϕ, the output of
the tableau rule.

• In short, nominals give us exactly the grip we need on the
bound variables hidden by modal notation. They give us
the benefits of first-order techniques in a decidable logic.

Link with first-order deduction (Studio Version)

• The hybrid rule from @i♦ϕ conclude @i♦j and @jϕ is
essentially the first-order rule of Existential Elimination
(from ∃xϕ conclude ϕ[x← j]).

• Recall that (via the Standard Translation) we know that
♦ϕ is shorthand for ∃y(Riy ∧ sty(ϕ)).

• Applying Existential Elimination to this yields
Rij ∧ stj(ϕ). But this is just @i♦j ∧@jϕ, the output of
the tableau rule.

• In short, nominals give us exactly the grip we need on the
bound variables hidden by modal notation. They give us
the benefits of first-order techniques in a decidable logic.

Link with first-order deduction (Studio Version)

• The hybrid rule from @i♦ϕ conclude @i♦j and @jϕ is
essentially the first-order rule of Existential Elimination
(from ∃xϕ conclude ϕ[x← j]).

• Recall that (via the Standard Translation) we know that
♦ϕ is shorthand for ∃y(Riy ∧ sty(ϕ)).

• Applying Existential Elimination to this yields
Rij ∧ stj(ϕ). But this is just @i♦j ∧@jϕ, the output of
the tableau rule.

• In short, nominals give us exactly the grip we need on the
bound variables hidden by modal notation. They give us
the benefits of first-order techniques in a decidable logic.

Link with first-order deduction (Studio Version)

• The hybrid rule from @i♦ϕ conclude @i♦j and @jϕ is
essentially the first-order rule of Existential Elimination
(from ∃xϕ conclude ϕ[x← j]).

• Recall that (via the Standard Translation) we know that
♦ϕ is shorthand for ∃y(Riy ∧ sty(ϕ)).

• Applying Existential Elimination to this yields
Rij ∧ stj(ϕ). But this is just @i♦j ∧@jϕ, the output of
the tableau rule.

• In short, nominals give us exactly the grip we need on the
bound variables hidden by modal notation. They give us
the benefits of first-order techniques in a decidable logic.

Link with first-order deduction (Studio Version)

• The hybrid rule from @i♦ϕ conclude @i♦j and @jϕ is
essentially the first-order rule of Existential Elimination
(from ∃xϕ conclude ϕ[x← j]).

• Recall that (via the Standard Translation) we know that
♦ϕ is shorthand for ∃y(Riy ∧ sty(ϕ)).

• Applying Existential Elimination to this yields
Rij ∧ stj(ϕ). But this is just @i♦j ∧@jϕ, the output of
the tableau rule.

• In short, nominals give us exactly the grip we need on the
bound variables hidden by modal notation. They give us
the benefits of first-order techniques in a decidable logic.

Link with first-order deduction (Live Version)

Hybrid Logic First Order Logic

@i♦φ

∃y(Riy ∧ STy(φ))

@i♦j
@jφ

Rij ∧ STj(φ)
Rij
STj(φ)

Link with first-order deduction (Live Version)

Hybrid Logic First Order Logic

@i♦φ ∃y(Riy ∧ STy(φ))

@i♦j
@jφ

Rij ∧ STj(φ)
Rij
STj(φ)

14

Link with first-order deduction (Live Version)

Hybrid Logic First Order Logic

@i♦φ ∃y(Riy ∧ STy(φ))

@i♦j
@jφ

Rij ∧ STj(φ)
Rij
STj(φ)

Link with first-order deduction (Live Version)

Hybrid Logic First Order Logic

@i♦φ ∃y(Riy ∧ STy(φ))

@i♦j
@jφ

Rij ∧ STj(φ)

Rij
STj(φ)

Link with first-order deduction (Live Version)

Hybrid Logic First Order Logic

@i♦φ ∃y(Riy ∧ STy(φ))

@i♦j
@jφ

Rij ∧ STj(φ)
Rij
STj(φ)

Equality rules

But more rules are needed. Why? Nothing we have said so far
gets to grips with fact that nominals have an intrinsic logic.
Nominals give us a modal theory of equality, and we need to get
to deal with this. Here’s one way of doing this:

(i occurs on branch)
@ii

@ij @iϕ

@jϕ

@i♦j @jk

@i♦k

(♦p ∧ ♦¬p)→ (�(q→ i)→ ♦¬q)

1 ¬@i((♦p ∧ ♦¬p)→ (�(q→ i)→ ♦¬q))
2 @i(♦p ∧ ♦¬p)
2′ ¬@i(�(q→ i)→ ♦¬q) Propositional rule on 1
3 @i♦p
3′ @i♦¬p Propositional rule on 2
4 @i♦j
4′ @jp ♦ rule on 3
5 @i♦k
5′ @k¬p ♦ rule on 3’
6 @i�(q→ i)
6′ ¬@i♦¬q Propositional rule on 2’

(♦p ∧ ♦¬p)→ (�(q→ i)→ ♦¬q)

1 ¬@i((♦p ∧ ♦¬p)→ (�(q→ i)→ ♦¬q))

2 @i(♦p ∧ ♦¬p)
2′ ¬@i(�(q→ i)→ ♦¬q) Propositional rule on 1
3 @i♦p
3′ @i♦¬p Propositional rule on 2
4 @i♦j
4′ @jp ♦ rule on 3
5 @i♦k
5′ @k¬p ♦ rule on 3’
6 @i�(q→ i)
6′ ¬@i♦¬q Propositional rule on 2’

(♦p ∧ ♦¬p)→ (�(q→ i)→ ♦¬q)

1 ¬@i((♦p ∧ ♦¬p)→ (�(q→ i)→ ♦¬q))
2 @i(♦p ∧ ♦¬p)
2′ ¬@i(�(q→ i)→ ♦¬q) Propositional rule on 1

3 @i♦p
3′ @i♦¬p Propositional rule on 2
4 @i♦j
4′ @jp ♦ rule on 3
5 @i♦k
5′ @k¬p ♦ rule on 3’
6 @i�(q→ i)
6′ ¬@i♦¬q Propositional rule on 2’

(♦p ∧ ♦¬p)→ (�(q→ i)→ ♦¬q)

1 ¬@i((♦p ∧ ♦¬p)→ (�(q→ i)→ ♦¬q))
2 @i(♦p ∧ ♦¬p)
2′ ¬@i(�(q→ i)→ ♦¬q) Propositional rule on 1
3 @i♦p
3′ @i♦¬p Propositional rule on 2

4 @i♦j
4′ @jp ♦ rule on 3
5 @i♦k
5′ @k¬p ♦ rule on 3’
6 @i�(q→ i)
6′ ¬@i♦¬q Propositional rule on 2’

15

(♦p ∧ ♦¬p)→ (�(q→ i)→ ♦¬q)

1 ¬@i((♦p ∧ ♦¬p)→ (�(q→ i)→ ♦¬q))
2 @i(♦p ∧ ♦¬p)
2′ ¬@i(�(q→ i)→ ♦¬q) Propositional rule on 1
3 @i♦p
3′ @i♦¬p Propositional rule on 2
4 @i♦j
4′ @jp ♦ rule on 3

5 @i♦k
5′ @k¬p ♦ rule on 3’
6 @i�(q→ i)
6′ ¬@i♦¬q Propositional rule on 2’

(♦p ∧ ♦¬p)→ (�(q→ i)→ ♦¬q)

1 ¬@i((♦p ∧ ♦¬p)→ (�(q→ i)→ ♦¬q))
2 @i(♦p ∧ ♦¬p)
2′ ¬@i(�(q→ i)→ ♦¬q) Propositional rule on 1
3 @i♦p
3′ @i♦¬p Propositional rule on 2
4 @i♦j
4′ @jp ♦ rule on 3
5 @i♦k
5′ @k¬p ♦ rule on 3’

6 @i�(q→ i)
6′ ¬@i♦¬q Propositional rule on 2’

(♦p ∧ ♦¬p)→ (�(q→ i)→ ♦¬q)

1 ¬@i((♦p ∧ ♦¬p)→ (�(q→ i)→ ♦¬q))
2 @i(♦p ∧ ♦¬p)
2′ ¬@i(�(q→ i)→ ♦¬q) Propositional rule on 1
3 @i♦p
3′ @i♦¬p Propositional rule on 2
4 @i♦j
4′ @jp ♦ rule on 3
5 @i♦k
5′ @k¬p ♦ rule on 3’
6 @i�(q→ i)
6′ ¬@i♦¬q Propositional rule on 2’

The proof continued. . .

4 @i♦j
4′ @jp
5 @i♦k
5′ @k¬p
6 @i�(q→ i)
6′ ¬@i♦¬q

7 @jq ¬♦ rule on 4 and 6’, then ¬@ rule
8 @j(q→ i) � rule on 4 and 6
9 ¬@jq @ji Propositional rule on 7 and 8
⊥7,9

The proof continued. . .

4 @i♦j
4′ @jp
5 @i♦k
5′ @k¬p
6 @i�(q→ i)
6′ ¬@i♦¬q
7 @jq ¬♦ rule on 4 and 6’, then ¬@ rule

8 @j(q→ i) � rule on 4 and 6
9 ¬@jq @ji Propositional rule on 7 and 8
⊥7,9

The proof continued. . .

4 @i♦j
4′ @jp
5 @i♦k
5′ @k¬p
6 @i�(q→ i)
6′ ¬@i♦¬q
7 @jq ¬♦ rule on 4 and 6’, then ¬@ rule
8 @j(q→ i) � rule on 4 and 6

9 ¬@jq @ji Propositional rule on 7 and 8
⊥7,9

The proof continued. . .

4 @i♦j
4′ @jp
5 @i♦k
5′ @k¬p
6 @i�(q→ i)
6′ ¬@i♦¬q
7 @jq ¬♦ rule on 4 and 6’, then ¬@ rule
8 @j(q→ i) � rule on 4 and 6
9 ¬@jq @ji Propositional rule on 7 and 8
⊥7,9

The proof continued. . .

4 @i♦j
4′ @jp
5 @i♦k
5′ @k¬p
6 @i�(q→ i)
6′ ¬@i♦¬q
7 @jq ¬♦ rule on 4 and 6’, then ¬@ rule
8 @j(q→ i) � rule on 4 and 6
9 ¬@jq @ji Propositional rule on 7 and 8
⊥7,9

16

The proof continued. . .

4 @i♦j
4′ @jp
5 @i♦k
5′ @k¬p
6 @i�(q→ i)
6′ ¬@i♦¬q
9 @ji

10 @kq ¬♦ rule on 5 and 6’, then ¬@ rule
11 @k(q→ i) � rule on 5 and 6
12 @ki Modus Ponens on 10 and 11
13 @ip Nom on 4’ and 9
14 @i¬p Nom on 5’ and 12
15 ¬@ip ¬ rule on 14 — contradiction!

The proof continued. . .

4 @i♦j
4′ @jp
5 @i♦k
5′ @k¬p
6 @i�(q→ i)
6′ ¬@i♦¬q
9 @ji
10 @kq ¬♦ rule on 5 and 6’, then ¬@ rule

11 @k(q→ i) � rule on 5 and 6
12 @ki Modus Ponens on 10 and 11
13 @ip Nom on 4’ and 9
14 @i¬p Nom on 5’ and 12
15 ¬@ip ¬ rule on 14 — contradiction!

The proof continued. . .

4 @i♦j
4′ @jp
5 @i♦k
5′ @k¬p
6 @i�(q→ i)
6′ ¬@i♦¬q
9 @ji
10 @kq ¬♦ rule on 5 and 6’, then ¬@ rule
11 @k(q→ i) � rule on 5 and 6

12 @ki Modus Ponens on 10 and 11
13 @ip Nom on 4’ and 9
14 @i¬p Nom on 5’ and 12
15 ¬@ip ¬ rule on 14 — contradiction!

The proof continued. . .

4 @i♦j
4′ @jp
5 @i♦k
5′ @k¬p
6 @i�(q→ i)
6′ ¬@i♦¬q
9 @ji
10 @kq ¬♦ rule on 5 and 6’, then ¬@ rule
11 @k(q→ i) � rule on 5 and 6
12 @ki Modus Ponens on 10 and 11

13 @ip Nom on 4’ and 9
14 @i¬p Nom on 5’ and 12
15 ¬@ip ¬ rule on 14 — contradiction!

The proof continued. . .

4 @i♦j
4′ @jp
5 @i♦k
5′ @k¬p
6 @i�(q→ i)
6′ ¬@i♦¬q
9 @ji
10 @kq ¬♦ rule on 5 and 6’, then ¬@ rule
11 @k(q→ i) � rule on 5 and 6
12 @ki Modus Ponens on 10 and 11
13 @ip Nom on 4’ and 9

14 @i¬p Nom on 5’ and 12
15 ¬@ip ¬ rule on 14 — contradiction!

The proof continued. . .

4 @i♦j
4′ @jp
5 @i♦k
5′ @k¬p
6 @i�(q→ i)
6′ ¬@i♦¬q
9 @ji
10 @kq ¬♦ rule on 5 and 6’, then ¬@ rule
11 @k(q→ i) � rule on 5 and 6
12 @ki Modus Ponens on 10 and 11
13 @ip Nom on 4’ and 9
14 @i¬p Nom on 5’ and 12

15 ¬@ip ¬ rule on 14 — contradiction!

The proof continued. . .

4 @i♦j
4′ @jp
5 @i♦k
5′ @k¬p
6 @i�(q→ i)
6′ ¬@i♦¬q
9 @ji
10 @kq ¬♦ rule on 5 and 6’, then ¬@ rule
11 @k(q→ i) � rule on 5 and 6
12 @ki Modus Ponens on 10 and 11
13 @ip Nom on 4’ and 9
14 @i¬p Nom on 5’ and 12
15 ¬@ip ¬ rule on 14 — contradiction!

Reasoning over other classes of models

• Our tableau system deals (correctly and completely) with
reasoning over arbitrary models, that is, models where we
have made no special assumptions about the underlying
relations. For some applications this is sufficient.

• But (as we said at the start of the lecture) in many
applications we are interested in models where the relations
interpreting the modalities have special properties, such as
symmetry, transitivity, irreflexivity, density, discreteness,
antisymmetry, determinism, and so on. We need to find a
way of coping with such frame conditions in hybrid logic.

• Our basic tableau system cannot handle such requirements
— but it can be easily extended to cope with them, thus
meeting the traditional modal goal of generality. We’ll look
at two examples.

17

Nice neighbours

Consider the following statement:

If you have a neighbour who only has nice neighbours,
then you are nice.

We can represent it as follows:

〈neighbour〉 [neighbour] nice→ nice

This is true no matter how the adjective “nice” is interpreted.
Its truth hinges on the fact that neighbourhood is a symmetric
relation.

Informal Argument

• Suppose 〈neighbour〉 [neighbour] nice→ nice is false of
you.

• Then 〈neighbour〉 [neighbour] nice is true of you, but
nice is false of you (that is, you are not nice).

• Then you have a neighbour (let’s call him Joe) who only
has nice neighbours (that is, [neighbour] nice is true of
Joe).

• But neighbourhood is a symmetric relation, hence you are
one of Joe’s neighbours.

• But all Joe’s neighbours are nice — so you must be nice
too. Contradiction!

• So 〈neighbour〉 [neighbour] nice→ nice must true of you
after all.

But can we mimic this argument using our existing tableau
system? Let’s try. . .

Informal Argument

• Suppose 〈neighbour〉 [neighbour] nice→ nice is false of
you.

• Then 〈neighbour〉 [neighbour] nice is true of you, but
nice is false of you (that is, you are not nice).

• Then you have a neighbour (let’s call him Joe) who only
has nice neighbours (that is, [neighbour] nice is true of
Joe).

• But neighbourhood is a symmetric relation, hence you are
one of Joe’s neighbours.

• But all Joe’s neighbours are nice — so you must be nice
too. Contradiction!

• So 〈neighbour〉 [neighbour] nice→ nice must true of you
after all.

But can we mimic this argument using our existing tableau
system? Let’s try. . .

Informal Argument

• Suppose 〈neighbour〉 [neighbour] nice→ nice is false of
you.

• Then 〈neighbour〉 [neighbour] nice is true of you, but
nice is false of you (that is, you are not nice).

• Then you have a neighbour (let’s call him Joe) who only
has nice neighbours (that is, [neighbour] nice is true of
Joe).

• But neighbourhood is a symmetric relation, hence you are
one of Joe’s neighbours.

• But all Joe’s neighbours are nice — so you must be nice
too. Contradiction!

• So 〈neighbour〉 [neighbour] nice→ nice must true of you
after all.

But can we mimic this argument using our existing tableau
system? Let’s try. . .

Informal Argument

• Suppose 〈neighbour〉 [neighbour] nice→ nice is false of
you.

• Then 〈neighbour〉 [neighbour] nice is true of you, but
nice is false of you (that is, you are not nice).

• Then you have a neighbour (let’s call him Joe) who only
has nice neighbours (that is, [neighbour] nice is true of
Joe).

• But neighbourhood is a symmetric relation, hence you are
one of Joe’s neighbours.

• But all Joe’s neighbours are nice — so you must be nice
too. Contradiction!

• So 〈neighbour〉 [neighbour] nice→ nice must true of you
after all.

But can we mimic this argument using our existing tableau
system? Let’s try. . .

Informal Argument

• Suppose 〈neighbour〉 [neighbour] nice→ nice is false of
you.

• Then 〈neighbour〉 [neighbour] nice is true of you, but
nice is false of you (that is, you are not nice).

• Then you have a neighbour (let’s call him Joe) who only
has nice neighbours (that is, [neighbour] nice is true of
Joe).

• But neighbourhood is a symmetric relation, hence you are
one of Joe’s neighbours.

• But all Joe’s neighbours are nice — so you must be nice
too. Contradiction!

• So 〈neighbour〉 [neighbour] nice→ nice must true of you
after all.

But can we mimic this argument using our existing tableau
system? Let’s try. . .

Informal Argument

• Suppose 〈neighbour〉 [neighbour] nice→ nice is false of
you.

• Then 〈neighbour〉 [neighbour] nice is true of you, but
nice is false of you (that is, you are not nice).

• Then you have a neighbour (let’s call him Joe) who only
has nice neighbours (that is, [neighbour] nice is true of
Joe).

• But neighbourhood is a symmetric relation, hence you are
one of Joe’s neighbours.

• But all Joe’s neighbours are nice — so you must be nice
too. Contradiction!

• So 〈neighbour〉 [neighbour] nice→ nice must true of you
after all.

But can we mimic this argument using our existing tableau
system? Let’s try. . .

Informal Argument

• Suppose 〈neighbour〉 [neighbour] nice→ nice is false of
you.

• Then 〈neighbour〉 [neighbour] nice is true of you, but
nice is false of you (that is, you are not nice).

• Then you have a neighbour (let’s call him Joe) who only
has nice neighbours (that is, [neighbour] nice is true of
Joe).

• But neighbourhood is a symmetric relation, hence you are
one of Joe’s neighbours.

• But all Joe’s neighbours are nice — so you must be nice
too. Contradiction!

• So 〈neighbour〉 [neighbour] nice→ nice must true of you
after all.

But can we mimic this argument using our existing tableau
system? Let’s try. . .

18

Informal Argument

• Suppose 〈neighbour〉 [neighbour] nice→ nice is false of
you.

• Then 〈neighbour〉 [neighbour] nice is true of you, but
nice is false of you (that is, you are not nice).

• Then you have a neighbour (let’s call him Joe) who only
has nice neighbours (that is, [neighbour] nice is true of
Joe).

• But neighbourhood is a symmetric relation, hence you are
one of Joe’s neighbours.

• But all Joe’s neighbours are nice — so you must be nice
too. Contradiction!

• So 〈neighbour〉 [neighbour] nice→ nice must true of you
after all.

But can we mimic this argument using our existing tableau
system? Let’s try. . .

Informal Argument

• Suppose 〈neighbour〉 [neighbour] nice→ nice is false of
you.

• Then 〈neighbour〉 [neighbour] nice is true of you, but
nice is false of you (that is, you are not nice).

• Then you have a neighbour (let’s call him Joe) who only
has nice neighbours (that is, [neighbour] nice is true of
Joe).

• But neighbourhood is a symmetric relation, hence you are
one of Joe’s neighbours.

• But all Joe’s neighbours are nice — so you must be nice
too. Contradiction!

• So 〈neighbour〉 [neighbour] nice→ nice must true of you
after all.

But can we mimic this argument using our existing tableau
system? Let’s try. . .

〈neighbour〉 [neighbour] nice→ nice

1 @i(〈neighbour〉 [neighbour] nice→ nice)
2 @i〈neighbour〉 [neighbour] nice
2′ ¬@inice Propositional rule on 1
3 @i〈neighbour〉 j
3′ @j [neighbour] nice ♦ rule on 2

Now we are blocked. There is no way to close this branch.

〈neighbour〉 [neighbour] nice→ nice

1 @i(〈neighbour〉 [neighbour] nice→ nice)

2 @i〈neighbour〉 [neighbour] nice
2′ ¬@inice Propositional rule on 1
3 @i〈neighbour〉 j
3′ @j [neighbour] nice ♦ rule on 2

Now we are blocked. There is no way to close this branch.

〈neighbour〉 [neighbour] nice→ nice

1 @i(〈neighbour〉 [neighbour] nice→ nice)
2 @i〈neighbour〉 [neighbour] nice
2′ ¬@inice Propositional rule on 1

3 @i〈neighbour〉 j
3′ @j [neighbour] nice ♦ rule on 2

Now we are blocked. There is no way to close this branch.

〈neighbour〉 [neighbour] nice→ nice

1 @i(〈neighbour〉 [neighbour] nice→ nice)
2 @i〈neighbour〉 [neighbour] nice
2′ ¬@inice Propositional rule on 1
3 @i〈neighbour〉 j
3′ @j [neighbour] nice ♦ rule on 2

Now we are blocked. There is no way to close this branch.

〈neighbour〉 [neighbour] nice→ nice

1 @i(〈neighbour〉 [neighbour] nice→ nice)
2 @i〈neighbour〉 [neighbour] nice
2′ ¬@inice Propositional rule on 1
3 @i〈neighbour〉 j
3′ @j [neighbour] nice ♦ rule on 2

Now we are blocked. There is no way to close this branch.

But there is an easy solution

Add the following rule when working with symmetric relations:

@i〈neighbour〉 j
@j〈neighbour〉 i

(Here i and j can be any nominals on the branch we are
working on).
This rule is a direct expression of symmetry, and with its help
we can finish off our proof.

19

〈neighbour〉 [neighbour] nice→ nice

1 @i(〈neighbour〉 [neighbour] nice→ nice)
2 @i〈neighbour〉 [neighbour] nice
2′ ¬@inice Propositional rule on 1
3 @i〈neighbour〉 j
3′ @j [neighbour] nice ♦ rule on 2

4 @j〈neighbour〉 i Symmetry rule on 3
5 @inice � rule on 3’ and 4
⊥2′,5

〈neighbour〉 [neighbour] nice→ nice

1 @i(〈neighbour〉 [neighbour] nice→ nice)
2 @i〈neighbour〉 [neighbour] nice
2′ ¬@inice Propositional rule on 1
3 @i〈neighbour〉 j
3′ @j [neighbour] nice ♦ rule on 2
4 @j〈neighbour〉 i Symmetry rule on 3

5 @inice � rule on 3’ and 4
⊥2′,5

〈neighbour〉 [neighbour] nice→ nice

1 @i(〈neighbour〉 [neighbour] nice→ nice)
2 @i〈neighbour〉 [neighbour] nice
2′ ¬@inice Propositional rule on 1
3 @i〈neighbour〉 j
3′ @j [neighbour] nice ♦ rule on 2
4 @j〈neighbour〉 i Symmetry rule on 3
5 @inice � rule on 3’ and 4

⊥2′,5

〈neighbour〉 [neighbour] nice→ nice

1 @i(〈neighbour〉 [neighbour] nice→ nice)
2 @i〈neighbour〉 [neighbour] nice
2′ ¬@inice Propositional rule on 1
3 @i〈neighbour〉 j
3′ @j [neighbour] nice ♦ rule on 2
4 @j〈neighbour〉 i Symmetry rule on 3
5 @inice � rule on 3’ and 4
⊥2′,5

Loop-free time

Consider the following statement:

If time i precedes time j, then time j does not precede
time i.

We can represent the statement as follows (where 〈f〉 is a
diamond meaning “sometime-in-the-future”):

@i〈f〉 j → ¬@j〈f〉 i

If you accept that temporal precedence is both transitive and
irreflexive (the usual assumption) then this is a valid statement.

Informal Argument

• Suppose that “if i precedes time j, then time j does not
precede time i” is false.

• Then time i precedes time j, but time j precedes time i too.
• But temporal precedence is transitive, so time i precedes

time i.
• But temporal precedence is irreflexive, so time i cannot

precede time i.
• From this contradiction we conclude that our original

statement was true after all.

Informal Argument

• Suppose that “if i precedes time j, then time j does not
precede time i” is false.

• Then time i precedes time j, but time j precedes time i too.
• But temporal precedence is transitive, so time i precedes

time i.
• But temporal precedence is irreflexive, so time i cannot

precede time i.
• From this contradiction we conclude that our original

statement was true after all.

Informal Argument

• Suppose that “if i precedes time j, then time j does not
precede time i” is false.

• Then time i precedes time j, but time j precedes time i too.

• But temporal precedence is transitive, so time i precedes
time i.

• But temporal precedence is irreflexive, so time i cannot
precede time i.

• From this contradiction we conclude that our original
statement was true after all.

20

Informal Argument

• Suppose that “if i precedes time j, then time j does not
precede time i” is false.

• Then time i precedes time j, but time j precedes time i too.
• But temporal precedence is transitive, so time i precedes

time i.

• But temporal precedence is irreflexive, so time i cannot
precede time i.

• From this contradiction we conclude that our original
statement was true after all.

Informal Argument

• Suppose that “if i precedes time j, then time j does not
precede time i” is false.

• Then time i precedes time j, but time j precedes time i too.
• But temporal precedence is transitive, so time i precedes

time i.
• But temporal precedence is irreflexive, so time i cannot

precede time i.

• From this contradiction we conclude that our original
statement was true after all.

Informal Argument

• Suppose that “if i precedes time j, then time j does not
precede time i” is false.

• Then time i precedes time j, but time j precedes time i too.
• But temporal precedence is transitive, so time i precedes

time i.
• But temporal precedence is irreflexive, so time i cannot

precede time i.
• From this contradiction we conclude that our original

statement was true after all.

But can we prove @i〈f〉 j → ¬@j〈f〉 i using our existing
tableau system? Let’s try. . .

1 ¬@k(@i〈f〉 j → ¬@j〈f〉 i)
2 @k@i〈f〉 j
2′ ¬@k¬@j〈f〉 i) Propositional rule on 1
3 @i〈f〉 j @ rule on 2
4 @j〈f〉 i ¬@¬ rule on 2’

Now we are blocked. There is no way to close this branch.

But can we prove @i〈f〉 j → ¬@j〈f〉 i using our existing
tableau system? Let’s try. . .

1 ¬@k(@i〈f〉 j → ¬@j〈f〉 i)

2 @k@i〈f〉 j
2′ ¬@k¬@j〈f〉 i) Propositional rule on 1
3 @i〈f〉 j @ rule on 2
4 @j〈f〉 i ¬@¬ rule on 2’

Now we are blocked. There is no way to close this branch.

But can we prove @i〈f〉 j → ¬@j〈f〉 i using our existing
tableau system? Let’s try. . .

1 ¬@k(@i〈f〉 j → ¬@j〈f〉 i)
2 @k@i〈f〉 j
2′ ¬@k¬@j〈f〉 i) Propositional rule on 1

3 @i〈f〉 j @ rule on 2
4 @j〈f〉 i ¬@¬ rule on 2’

Now we are blocked. There is no way to close this branch.

But can we prove @i〈f〉 j → ¬@j〈f〉 i using our existing
tableau system? Let’s try. . .

1 ¬@k(@i〈f〉 j → ¬@j〈f〉 i)
2 @k@i〈f〉 j
2′ ¬@k¬@j〈f〉 i) Propositional rule on 1
3 @i〈f〉 j @ rule on 2

4 @j〈f〉 i ¬@¬ rule on 2’

Now we are blocked. There is no way to close this branch.

But can we prove @i〈f〉 j → ¬@j〈f〉 i using our existing
tableau system? Let’s try. . .

1 ¬@k(@i〈f〉 j → ¬@j〈f〉 i)
2 @k@i〈f〉 j
2′ ¬@k¬@j〈f〉 i) Propositional rule on 1
3 @i〈f〉 j @ rule on 2
4 @j〈f〉 i ¬@¬ rule on 2’

Now we are blocked. There is no way to close this branch.

21

But can we prove @i〈f〉 j → ¬@j〈f〉 i using our existing
tableau system? Let’s try. . .

1 ¬@k(@i〈f〉 j → ¬@j〈f〉 i)
2 @k@i〈f〉 j
2′ ¬@k¬@j〈f〉 i) Propositional rule on 1
3 @i〈f〉 j @ rule on 2
4 @j〈f〉 i ¬@¬ rule on 2’

Now we are blocked. There is no way to close this branch.

But there is an easy solution

Add the following rules when working with irreflexive and
transitive relations:

@i¬〈f〉 i
@i〈f〉 j @j〈f〉 k

@i〈f〉 k
(Here i, j and k can be any nominals on the branch we are
working on).
These rules are a direct expression of irreflexivity and
transitivity, and with their help we can finish off our proof.

@i〈f〉 j → ¬@j〈f〉 i

1 ¬@k(@i〈f〉 j → ¬@j〈f〉 i)
2 @k@i〈f〉 j
2′ ¬@k¬@j〈f〉 i) Propositional rule on 1
3 @i〈f〉 j @ rule on 2
4 @j〈f〉 i ¬@¬ rule on 2’

5 @i〈f〉 i Transitivity rule on 3 and 4
6 ¬@i〈f〉 i Irreflexivity rule
⊥5,6

@i〈f〉 j → ¬@j〈f〉 i

1 ¬@k(@i〈f〉 j → ¬@j〈f〉 i)
2 @k@i〈f〉 j
2′ ¬@k¬@j〈f〉 i) Propositional rule on 1
3 @i〈f〉 j @ rule on 2
4 @j〈f〉 i ¬@¬ rule on 2’
5 @i〈f〉 i Transitivity rule on 3 and 4

6 ¬@i〈f〉 i Irreflexivity rule
⊥5,6

@i〈f〉 j → ¬@j〈f〉 i

1 ¬@k(@i〈f〉 j → ¬@j〈f〉 i)
2 @k@i〈f〉 j
2′ ¬@k¬@j〈f〉 i) Propositional rule on 1
3 @i〈f〉 j @ rule on 2
4 @j〈f〉 i ¬@¬ rule on 2’
5 @i〈f〉 i Transitivity rule on 3 and 4
6 ¬@i〈f〉 i Irreflexivity rule

⊥5,6

@i〈f〉 j → ¬@j〈f〉 i

1 ¬@k(@i〈f〉 j → ¬@j〈f〉 i)
2 @k@i〈f〉 j
2′ ¬@k¬@j〈f〉 i) Propositional rule on 1
3 @i〈f〉 j @ rule on 2
4 @j〈f〉 i ¬@¬ rule on 2’
5 @i〈f〉 i Transitivity rule on 3 and 4
6 ¬@i〈f〉 i Irreflexivity rule
⊥5,6

Pure formulas

• It’s time to be more precise about what completeness
results are possible here.

• To do this we need to think about pure formulas.
• A formula of the basic hybrid language is pure if it contains

no propositional variables. That is, the only atoms in pure
formulas are nominals (and > and ⊥ if we have them in the
language).

• We’ll first discuss what we can say about frames using pure
formulas, and then we’ll state a general result about how
they can help us in hybrid deduction.

Frame definability (I)

A formula defines a class of frames if it is valid on precisely the
frames belonging to that class class. We can define many
important classes of frames using pure formulas:

@i♦i Reflexivity

@i♦j → @j♦i Symmetry

@i♦j ∧@j♦k → @i♦k Transitivity

22

Frame definability (II)

These previous three examples are also definable using orthodox
modal language. But pure formulas can also define frame
classes which are not definable in orthodox modal logic:

@i¬♦i Irreflexivity

@i♦j → @j¬♦i Asymmetry

@i�(♦i→ i) Antisymmetry

@j♦i ∨@ji ∨@i♦j Trichotomy

From formulas to tableau rules

Let @iϕ be a pure formula, built out of nominals i, i1, . . . , in.
Then the simplest (though not always the smartest!) way of
turning this formula into a tableau rule is as follows:

(j, j1, . . . , jn on branch)

@iϕ[i← j, i1 ← j1, . . . , in ← jn]

This rule simply says: for any branch B of the tableau you are
building, you are free to instantiate @iϕ with nominals
occurring on B and add the resulting formula to the end of B.

Frame definability and deduction match for pure
formulas

Completeness Theorem Suppose you extend the basic
tableau system with the tableau rules for the pure formulas
@jϕ, . . . , @kψ (that is, the rules of the form just described).
Then the resulting system is (sound and) complete with respect
to the class of frames defined by these formulas.

That is, the frame-defining and deductive powers of pure
formulas match perfectly for pure formulas.

Two comments should be made about this result. . .

We can use any pure formula

At first glance, it seems that this completeness result only
covers pure formulas of the form @iϕ. But many interesting
pure formulas are not of this form. For example symmetry:
@i♦j → @j♦i.
Note, however, that for any pure formula ϕ, and any nominals
i, ϕ and @iϕ define exactly the same class of frames.

For example symmetry can be defined by @k(@i♦j → @j♦i).
So our completeness theorem is fully general: it covers all
classes of frames definable by a pure formulas.

But we can often be smarter

Suppose we want a complete system for symmetry. We could do
this by adding the rule suggested by the previous system:

@k(@i♦j → @j♦i)
.

But in the nice neighbours example we used the following rule
instead:

@i♦j
@j♦i

This rule is smarter: it saves us having to use tableau rules to
get rid of the outermost @k, and then break down the
implication.

Slightly more generally

Given a pure formula of the form

(@iϕ1 ∧ · · · ∧@jϕn)→ (@kϕn+1 ∨ · · · ∨@lϕn+m)

we can turn it into the tableau rule

@iϕ1, . . . ,@jϕn

@kϕn+1 | · · · | @lϕn+m

without losing completeness.

Further themes in hybrid deduction

To conclude, let’s briefly address the following questions:

• Why are general completeness proof easy to come by in
hybrid logic?

• Can we really adapt these ideas to other proof styles?
• Is any of this stuff implementable?

Why are general completeness proofs
so easy to come by in hybrid logic?

• Essentially because the basic hybrid logic enables us to use
first-order techniques to build models.

• For example, when proving completeness for hybrid Hilbert
systems, it’s not necessary to use modal-style canonical
models — you can build what are basically first-order
Henkin models.

• And for tableau completeness proofs, observe that the
tableau rules crunch formulas down into expressions of the
form (¬)@ip, (¬)@ij and (¬)@i♦j. Open branches are thus
Robinson diagrams of satisfying models.

23

Named models are important

• Moreover, the models we build in this way are named. (A
named model is a model in which every point is named by
some nominal.)

• A simple model theoretic argument shows that if all
instances of a pure formula ϕ are true at all states in a
named model, then the underlying frame validates φ. This
gives us completeness for any extension by pure axioms.

Can we really adapt these ideas to other proof styles?

Yes. The key insight is that the combination of nominals and @
allow us to extract information from behind the scope of
diamonds.

This idea has been successfully applied to define general sequent
calculi (Seligman), natural deduction systems (Seligman,
Brauner), and resolution calculi (Areces). It’s also been applied
with partial success to define display calculi (Demri and Goré).

Let’s take a quick look at the way Torben Brauner handles
natural deduction in hybrid logic.

Some basic natural deduction rules

[@iϕ]···
@iψ

(→ I)
@i(ϕ→ ψ)

@i(ϕ→ ψ) @iϕ
(→ E)

@iψ

@iϕ
(@I)

@k@iϕ

@k@iϕ
(@E)

@iϕ

Natural deduction rules for modalities

[@i♦j]···
@jϕ

(�I)∗
@i�ϕ

@i�ϕ @i♦k
(�E)

@kϕ

∗ j does not occur in @i�ϕ or in any undischarged assumptions
other than the specified occurrences of @i♦j.

An example: �(ϕ→ ψ)→ (�ϕ→ �ψ)

[@i�(ϕ→ ψ)]3 [@i♦j]1
(�E)

@j(ϕ→ ψ)

[@i�ϕ]2 [@i♦j]1
(�E)

@jϕ
(→ E)

@jψ
(�I)1

@i�ψ
(→ I)2

@i(�ϕ→ �ψ)
(→ I)3

@i(�(ϕ→ ψ)→ (�ϕ→ �ψ))

Is any of this stuff implementable?

Yes — but we need to be careful. For example, the equality
rules discussed today are nice for hand calculation, but naive
computationally.

The HTab system (Areces and Hoffmann) implements more
sophisticated rules (due to Bolander and Blackburn) which
guarantee termination. The system is optimised in several ways,
and although a recent system, is already a competitive prover.

And then there’s resolution

A significant development is the adaptation of the resolution
method for hybrid logic (Areces) and the implementation of the
HyLoRes prover (Areces, Goŕın, and Heguiabehere).

Strictly speaking, the method is resolution, plus a little
paramodulation to handle the equality reasoning. The hybrid
resolution rule is significantly simpler than other known
approaches to modal resolution — @ and nominals allow us to
pull resolvents out of the scope of modalities.

Many first-order resolution optimization techniques transfer to
hybrid logic, and Areces and Gorin are currently incorporating
such improvements into HyLoRes.

HTab and HyLoRes from the core of the new InToHyLo
(inference Tools for Hybrid Logic System).

Summing up . . .

• Orthodox modal logic demands proof methods that are
applicable to a wide range to of logics. But because it is
hard to extract information from under the scope of
diamonds it has been forced to rely on Hilbert-systems,
thereby sacrificing ease-of-use.

• The new tools offered by the basic hybrid language
(nominals and @) enable us to define usable proof systems,
such as tableau and natural deduction, basically because
they make it easy to pull information out of modal scope.

• These proof methods can be generalized to a wide range of
logics (completeness is automatic for pure formulas).
Mature implementations now exist.

24

A home for modal logic

Claim: if you’re doing traditional modal logic, you’re working in
the space carved out by hybrid logic with downarrow.

• We identify “locality” with “invariance under generated
submodels.”

• All traditional modal logics enjoy this property (though
some newcomers, such as the global modality and the
difference operator, explore what happens when you break
locality).

• Hybrid logic with downarrow provides a comfortable home
for traditional logics, performing such services as
interpolation repair.

But we are getting way ahead of ourselves — let’s first sit back
and learn what downarrow actually does. . .

Example 1: Losers

In our first example, we’ll think of the states of our models as
people (so we’re in a description logic style setting).

Suppose we define a loser to be someone who does not respect
himself/herself Can we define this concept in the basic hybrid
language?

Well, we can get part of the way, for we can say things like:

@i¬〈respect〉 i (i does not respect himself/herself)

@j¬〈respect〉 j (j does not respect himself/herself)

@k¬〈respect〉 k (k does not respect himself/herself)

But none of these formulas pins down the concept of
self-respect — only the concepts of self-respect for i, for j, for k,
and so on. We need to abstract away from the effects of
particular nominals (constants).

Example 1: Losers

In our first example, we’ll think of the states of our models as
people (so we’re in a description logic style setting).

Suppose we define a loser to be someone who does not respect
himself/herself Can we define this concept in the basic hybrid
language?

Well, we can get part of the way, for we can say things like:

@i¬〈respect〉 i (i does not respect himself/herself)

@j¬〈respect〉 j (j does not respect himself/herself)

@k¬〈respect〉 k (k does not respect himself/herself)

But none of these formulas pins down the concept of
self-respect — only the concepts of self-respect for i, for j, for k,
and so on. We need to abstract away from the effects of
particular nominals (constants).

Example 1: Losers

In our first example, we’ll think of the states of our models as
people (so we’re in a description logic style setting).

Suppose we define a loser to be someone who does not respect
himself/herself Can we define this concept in the basic hybrid
language?

Well, we can get part of the way, for we can say things like:

@i¬〈respect〉 i (i does not respect himself/herself)

@j¬〈respect〉 j (j does not respect himself/herself)

@k¬〈respect〉 k (k does not respect himself/herself)

But none of these formulas pins down the concept of
self-respect — only the concepts of self-respect for i, for j, for k,
and so on. We need to abstract away from the effects of
particular nominals (constants).

Example 1: Losers

In our first example, we’ll think of the states of our models as
people (so we’re in a description logic style setting).

Suppose we define a loser to be someone who does not respect
himself/herself Can we define this concept in the basic hybrid
language?

Well, we can get part of the way, for we can say things like:

@i¬〈respect〉 i (i does not respect himself/herself)

@j¬〈respect〉 j (j does not respect himself/herself)

@k¬〈respect〉 k (k does not respect himself/herself)

But none of these formulas pins down the concept of
self-respect — only the concepts of self-respect for i, for j, for k,
and so on. We need to abstract away from the effects of
particular nominals (constants).

Example 1: Losers

In our first example, we’ll think of the states of our models as
people (so we’re in a description logic style setting).

Suppose we define a loser to be someone who does not respect
himself/herself Can we define this concept in the basic hybrid
language?

Well, we can get part of the way, for we can say things like:

@i¬〈respect〉 i (i does not respect himself/herself)

@j¬〈respect〉 j (j does not respect himself/herself)

@k¬〈respect〉 k (k does not respect himself/herself)

But none of these formulas pins down the concept of
self-respect — only the concepts of self-respect for i, for j, for k,
and so on. We need to abstract away from the effects of
particular nominals (constants).

Example 1: Losers

In our first example, we’ll think of the states of our models as
people (so we’re in a description logic style setting).

Suppose we define a loser to be someone who does not respect
himself/herself Can we define this concept in the basic hybrid
language?

Well, we can get part of the way, for we can say things like:

@i¬〈respect〉 i (i does not respect himself/herself)

@j¬〈respect〉 j (j does not respect himself/herself)

@k¬〈respect〉 k (k does not respect himself/herself)

But none of these formulas pins down the concept of
self-respect — only the concepts of self-respect for i, for j, for k,
and so on. We need to abstract away from the effects of
particular nominals (constants).

Losers via downarrow

With the aid of the downarrow operator, we can do precisely
this:

↓x.¬〈respect〉x
This says: Let x be a temporary name for the point in the
model at which the formula is being evaluated. Then x is not
related to x by the respect relation.

To put it another way, it says: this person x (whoever that is)
does not respect himself/herself. In a sense, its what linguists
call a deictic definition.

The formula is true of precisely those states of our models
(people) who do not respect themselves, so we have defined the
required concept.

25

Example 2: Locally reflected epistemic states

In our second example, we’ll think of the states of our models as
epistemic states, and the relation between states as meaning is
an epistemic alternative to (so we’re in a traditional
agent-based setting).

Let’s say that an epistemic state s is locally reflected if all
epistemic alternatives t to s have s as an epistemic alternative.

More precisely, s is locally reflected iff ∀t(sRt→ tRs). That is,
s is a locally reflected state if it is symmetrically linked to other
points in the model.

Is there a basic hybrid formula that (in any model)
distinguishes locally reflected from non locally reflected states?

Well, we can try, but. . .

In particular, note that the formula @i�♦i does not do what we
want.

• In any particular model it merely asserts that the
particular state named i is locally reflected (“symmetrically
linked”). But that’s not what we want.

• On the other hand, if we insist that @i�♦i is to be taken
as a validity (that is, as an axiom) then we distinguish
symmetric models from all other models. But that’s not
what we want either.

• We want a formula that classifies the states of a model into
locally reflected and non locally reflected states.

Well, we can try, but. . .

In particular, note that the formula @i�♦i does not do what we
want.

• In any particular model it merely asserts that the
particular state named i is locally reflected (“symmetrically
linked”). But that’s not what we want.

• On the other hand, if we insist that @i�♦i is to be taken
as a validity (that is, as an axiom) then we distinguish
symmetric models from all other models. But that’s not
what we want either.

• We want a formula that classifies the states of a model into
locally reflected and non locally reflected states.

Well, we can try, but. . .

In particular, note that the formula @i�♦i does not do what we
want.

• In any particular model it merely asserts that the
particular state named i is locally reflected (“symmetrically
linked”). But that’s not what we want.

• On the other hand, if we insist that @i�♦i is to be taken
as a validity (that is, as an axiom) then we distinguish
symmetric models from all other models. But that’s not
what we want either.

• We want a formula that classifies the states of a model into
locally reflected and non locally reflected states.

Well, we can try, but. . .

In particular, note that the formula @i�♦i does not do what we
want.

• In any particular model it merely asserts that the
particular state named i is locally reflected (“symmetrically
linked”). But that’s not what we want.

• On the other hand, if we insist that @i�♦i is to be taken
as a validity (that is, as an axiom) then we distinguish
symmetric models from all other models. But that’s not
what we want either.

• We want a formula that classifies the states of a model into
locally reflected and non locally reflected states.

Well, we can try, but. . .

In particular, note that the formula @i�♦i does not do what we
want.

• In any particular model it merely asserts that the
particular state named i is locally reflected (“symmetrically
linked”). But that’s not what we want.

• On the other hand, if we insist that @i�♦i is to be taken
as a validity (that is, as an axiom) then we distinguish
symmetric models from all other models. But that’s not
what we want either.

• We want a formula that classifies the states of a model into
locally reflected and non locally reflected states.

Locally reflected states via downarrow

We can do this with downarrow. Instead of @i�♦i we use:

↓x.�♦x

Paraphrase this as follows: “this epistemic state x (whichever it
might be) is such that all it’s epistemic alternatives have x as
an epistemic alternative.”

Again, we’re defining the required concept by some kind of
deixis (this time, deictic reference to epistemic states, not
people).

Technically, we bind a state variable x to the current state. (A
state variable is just like a nominal, except that it can be
bound, whereas ordinary nominals can’t.)

Example 3: Problems and alarms

In this example we’ll think of the states of our models as points of
time (so we’re in a temporal logic setting). The example is adapted
from “Temporal Logic with Forgettable Past”, Laroussinie, Markey,
and Schnoebelen, 17th IEEE Symp. Logic in Computer Science (LICS
2002), Copenhagen, Denmark, July 2002.

• Suppose we are working with a system in which an alarm
may go off (once) sometime in the future. We want to
specify the following property: “Before the alarm goes off,
there was a problem.” Can we do this?

• Easy: [f] (alarm→ 〈p〉problem) specifies this. We don’t
even need hybrid logic.

26

Example 3: Problems and alarms

In this example we’ll think of the states of our models as points of
time (so we’re in a temporal logic setting). The example is adapted
from “Temporal Logic with Forgettable Past”, Laroussinie, Markey,
and Schnoebelen, 17th IEEE Symp. Logic in Computer Science (LICS
2002), Copenhagen, Denmark, July 2002.

• Suppose we are working with a system in which an alarm
may go off (once) sometime in the future. We want to
specify the following property: “Before the alarm goes off,
there was a problem.” Can we do this?

• Easy: [f] (alarm→ 〈p〉problem) specifies this. We don’t
even need hybrid logic.

Example 3: Problems and alarms

In this example we’ll think of the states of our models as points of
time (so we’re in a temporal logic setting). The example is adapted
from “Temporal Logic with Forgettable Past”, Laroussinie, Markey,
and Schnoebelen, 17th IEEE Symp. Logic in Computer Science (LICS
2002), Copenhagen, Denmark, July 2002.

• Suppose we are working with a system in which an alarm
may go off (once) sometime in the future. We want to
specify the following property: “Before the alarm goes off,
there was a problem.” Can we do this?

• Easy: [f] (alarm→ 〈p〉 problem) specifies this. We don’t
even need hybrid logic.

Resetting the alarm

Now suppose that the alarm has a reset button, and we want to
state that the previous specification holds after any reset. Can
we say this?

• Here’s an attempt: [f] (reset→ [f] (alarm→ 〈p〉 problem))
• But this is probably not what we want — a problem that

occurred before the reset may account for the alarm going
off.

Resetting the alarm

Now suppose that the alarm has a reset button, and we want to
state that the previous specification holds after any reset. Can
we say this?

• Here’s an attempt: [f] (reset→ [f] (alarm→ 〈p〉 problem))

• But this is probably not what we want — a problem that
occurred before the reset may account for the alarm going
off.

Resetting the alarm

Now suppose that the alarm has a reset button, and we want to
state that the previous specification holds after any reset. Can
we say this?

• Here’s an attempt: [f] (reset→ [f] (alarm→ 〈p〉 problem))
• But this is probably not what we want — a problem that

occurred before the reset may account for the alarm going
off.

Resetting the alarm with downarrow

But with the aid of ↓ we can specify what we want. We
dynamically name the spot where the reset occurred by binding
the state variable x to it, and then demand that the problem
occurred later than this:

[f] (reset→ ↓x.[f] (alarm→ 〈p〉 (problem ∧ 〈p〉x)))

Example 4: The Until operator

In this example we’ll continue to think of the states of our
models as points of time (so we’re still doing temporal logic).

Hans Kamp’s celebrated Until operator is a binary modality
with the following satisfaction definition:

M, w
 Until(ϕ,ψ) iff ∃v(w < v & M, v
 ϕ &
∀u(w < u < v ⇒M, u
 ψ))

This operator (and some of its variants) has proved extremely
useful as a specification tool. Can we define it in basic hybrid
logic?

Defining Until with downarrow

No, we can’t. But we can with the help of downarrow:

Until(ϕ,ψ) := ↓x.♦↓y.(ϕ ∧@x�(♦y → ψ)).

This says: name the present state x. Then, by looking forward
we can see a state (which we label y) such that ϕ is true at y,
and every state between x and y verifies ψ.

Note the use of @x to jump back to x, the starting point. This
is the first glimpse of a theme that echos through today’s
lecture: ↓ and @ work well together. We can use ↓ to ‘store’
some state of interest, and @ to ‘retrieve’ it when needed.

27

Defining Until with downarrow

No, we can’t. But we can with the help of downarrow:

Until(ϕ,ψ) := ↓x.♦↓y.(ϕ ∧@x�(♦y → ψ)).

This says: name the present state x. Then, by looking forward
we can see a state (which we label y) such that ϕ is true at y,
and every state between x and y verifies ψ.

Note the use of @x to jump back to x, the starting point. This
is the first glimpse of a theme that echos through today’s
lecture: ↓ and @ work well together. We can use ↓ to ‘store’
some state of interest, and @ to ‘retrieve’ it when needed.

Syntax

• Here are the required syntactic changes. Choose a denumerably
infinite set SVAR = {x, y, z. . . .}, the set of state variables,
disjoint from PROP, NOM and MOD.

• Like nominals, state variables are atomic formulas which name
states, but unlike nominals they can be bound.

• The hybrid language with downarrow (over PROP, NOM, MOD
and SVAR) is defined as follows:

WFF := x | i | p | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ
| ϕ→ ψ | 〈m〉ϕ | [m]ϕ | @iϕ | @xϕ | ↓x.ϕ

• Free and bound occurrences of state variables are defined in the
expected way, with ↓ as the only binder. A sentence is a formula
containing no free state variables.

Semantics

• Models M for hybrid languages with downarrow are just
the hybrid models we are used to (as usual, nominals are
assigned singletons).

• Given a model M = (W,R, V), an assignment on M is a
function g : SVAR −→W . (Thus an assignment makes a
state variable true at precisely one state.)

• Assignments will be used to interpret free state variables
Tarski-style. We merely relativise the clauses of the
satisfaction definition for the basic hybrid language to
assignments, and add the three new clauses we require.
Here’s how . . .

Satisfaction Definition

M, g, w
 x iff w = g(x) where x ∈ SVAR
M, g, w
 @xϕ iff M, g, g(x)
 ϕ
M, g, w
 ϕ ∧ ψ iff M, g, w
 ϕ and M, g, w
 ψ
M, g, w
 ♦ϕ iff ∃w′(wRw′ & M, g, w′
 ϕ)
M, g, w
 ↓x.ϕ iff M, g′, w
 ϕ, where g′ x∼ g and g′(x) = w

The fifth clause defines ↓ to be an operator that binds variables to
the state w at which evaluation is being performed. The notation
g′ x∼ g means that g′ is the assignment that differs from g, if at all,
only in what it assigns to x. By stipulating that g′(x) is to be w, we
bind a label to the here-and-now.

For sentences ϕ, we can simply write M, w
 ↓x.ϕ — why is this?

Standard Translation

Assume we’re using the same symbols for both state variables
and first-order variables. Let s be a metavariable over state
variables and nominals.

stx(y) = (y = x)

stx(@sϕ) = sts(ϕ)

stx(↓y.ϕ) = ∃y(x = y ∧ stx(ϕ))

This translation is satisfaction preserving, so hybrid logic with
downarrow is a fragment of the correspondence language (with
constants and equalities). We’ll see later which fragment it
corresponds to.

Tableau rules

We only need to make two changes. First, we need to let our
previous tableau rules apply when the subscript on @ is a state
variable rather than a nominal.

Second, we add the following two rules to cope with ↓. In the
following rule, s is used as a metavariable over nominals and
state variables:

@s↓x.ϕ
@sϕ[x← s]

¬@s↓x.ϕ
¬@sϕ[x← s]

If s is a variable, before substituting we rename bound
occurrences of s in ϕ to prevent accidental capture.

Example: ↓x.x

1 ¬@i↓x.x
2 ¬@ii ¬ ↓ rule on 1
3 @ii Ref
⊥2,3

Example: ↓x.x

1 ¬@i↓x.x

2 ¬@ii ¬ ↓ rule on 1
3 @ii Ref
⊥2,3

28

Example: ↓x.x

1 ¬@i↓x.x
2 ¬@ii ¬ ↓ rule on 1

3 @ii Ref
⊥2,3

Example: ↓x.x

1 ¬@i↓x.x
2 ¬@ii ¬ ↓ rule on 1
3 @ii Ref

⊥2,3

Example: ↓x.x

1 ¬@i↓x.x
2 ¬@ii ¬ ↓ rule on 1
3 @ii Ref
⊥2,3

Example: ↓x.ϕ↔ ¬↓x.¬ϕ

That is, like @, the downarrow binder is self dual. Let’s prove
the left-to right direction of this equivalence:

1 ¬@i(↓x.ϕ→ ¬↓x.¬ϕ)
2 @i↓x.ϕ
2′ ¬@i¬↓x.¬ϕ Propositional rule on 1
3 @i↓x.¬ϕ Propositional rule on 2′

4 @i¬ϕ[x← i] ↓ rule on 3
5 ¬@iϕ[x← i] Propositional rule on 4
6 @iϕ[x← i] ↓ rule on 2
⊥5,6

Example: ↓x.ϕ↔ ¬↓x.¬ϕ

That is, like @, the downarrow binder is self dual. Let’s prove
the left-to right direction of this equivalence:

1 ¬@i(↓x.ϕ→ ¬↓x.¬ϕ)

2 @i↓x.ϕ
2′ ¬@i¬↓x.¬ϕ Propositional rule on 1
3 @i↓x.¬ϕ Propositional rule on 2′

4 @i¬ϕ[x← i] ↓ rule on 3
5 ¬@iϕ[x← i] Propositional rule on 4
6 @iϕ[x← i] ↓ rule on 2
⊥5,6

Example: ↓x.ϕ↔ ¬↓x.¬ϕ

That is, like @, the downarrow binder is self dual. Let’s prove
the left-to right direction of this equivalence:

1 ¬@i(↓x.ϕ→ ¬↓x.¬ϕ)
2 @i↓x.ϕ
2′ ¬@i¬↓x.¬ϕ Propositional rule on 1

3 @i↓x.¬ϕ Propositional rule on 2′

4 @i¬ϕ[x← i] ↓ rule on 3
5 ¬@iϕ[x← i] Propositional rule on 4
6 @iϕ[x← i] ↓ rule on 2
⊥5,6

Example: ↓x.ϕ↔ ¬↓x.¬ϕ

That is, like @, the downarrow binder is self dual. Let’s prove
the left-to right direction of this equivalence:

1 ¬@i(↓x.ϕ→ ¬↓x.¬ϕ)
2 @i↓x.ϕ
2′ ¬@i¬↓x.¬ϕ Propositional rule on 1
3 @i↓x.¬ϕ Propositional rule on 2′

4 @i¬ϕ[x← i] ↓ rule on 3
5 ¬@iϕ[x← i] Propositional rule on 4
6 @iϕ[x← i] ↓ rule on 2
⊥5,6

Example: ↓x.ϕ↔ ¬↓x.¬ϕ

That is, like @, the downarrow binder is self dual. Let’s prove
the left-to right direction of this equivalence:

1 ¬@i(↓x.ϕ→ ¬↓x.¬ϕ)
2 @i↓x.ϕ
2′ ¬@i¬↓x.¬ϕ Propositional rule on 1
3 @i↓x.¬ϕ Propositional rule on 2′

4 @i¬ϕ[x← i] ↓ rule on 3

5 ¬@iϕ[x← i] Propositional rule on 4
6 @iϕ[x← i] ↓ rule on 2
⊥5,6

29

Example: ↓x.ϕ↔ ¬↓x.¬ϕ

That is, like @, the downarrow binder is self dual. Let’s prove
the left-to right direction of this equivalence:

1 ¬@i(↓x.ϕ→ ¬↓x.¬ϕ)
2 @i↓x.ϕ
2′ ¬@i¬↓x.¬ϕ Propositional rule on 1
3 @i↓x.¬ϕ Propositional rule on 2′

4 @i¬ϕ[x← i] ↓ rule on 3
5 ¬@iϕ[x← i] Propositional rule on 4

6 @iϕ[x← i] ↓ rule on 2
⊥5,6

Example: ↓x.ϕ↔ ¬↓x.¬ϕ

That is, like @, the downarrow binder is self dual. Let’s prove
the left-to right direction of this equivalence:

1 ¬@i(↓x.ϕ→ ¬↓x.¬ϕ)
2 @i↓x.ϕ
2′ ¬@i¬↓x.¬ϕ Propositional rule on 1
3 @i↓x.¬ϕ Propositional rule on 2′

4 @i¬ϕ[x← i] ↓ rule on 3
5 ¬@iϕ[x← i] Propositional rule on 4
6 @iϕ[x← i] ↓ rule on 2

⊥5,6

Example: ↓x.ϕ↔ ¬↓x.¬ϕ

That is, like @, the downarrow binder is self dual. Let’s prove
the left-to right direction of this equivalence:

1 ¬@i(↓x.ϕ→ ¬↓x.¬ϕ)
2 @i↓x.ϕ
2′ ¬@i¬↓x.¬ϕ Propositional rule on 1
3 @i↓x.¬ϕ Propositional rule on 2′

4 @i¬ϕ[x← i] ↓ rule on 3
5 ¬@iϕ[x← i] Propositional rule on 4
6 @iϕ[x← i] ↓ rule on 2
⊥5,6

Completeness

This tableau system is (sound and) complete with respect to
the class of all models.

Nonetheless, as was explained in yesterday’s lecture, we are
often interested in deduction over other classes of models. Can
the tableau system be extended to deal with reasoning over
other classes of models?

Yes, it can — and once again it’s pure formulas that make
things easy.

Pure formulas

• As before, a pure formula is simply a formula not
containing any propositional symbols.

• But this means that pure formulas may contain state
variables and ↓, not just nominals, ⊥ and >, so we can
define a lot more frame classes than before.

• Nonetheless, completeness is still automatic. Recall that if
@iϕ be a pure formula, whose nominals (if any) are
i, i1, . . . , in, then we can turn it into the following tableau
rule:

(j, j1, . . . , jn on branch)

@iϕ[i← j, i1 ← j1, . . . , in ← jn]

Frame definability and deduction match for pure
formulas

Completeness Theorem Suppose you extend the basic
tableau system with the tableau rules for the pure formulas
@jϕ, . . . , @kψ (that is, the rules of the form just described).
Then the resulting system is (sound and) complete with respect
to the class of frames defined by these formulas.

That is, the frame-defining and deductive powers of pure
formulas match perfectly — even when ↓ has been added to the
language.

Towards the logic of locality

• But now for the fundamental question: what exactly is
hybrid logic with downarrow?

• We know what basic modal logic is: it’s the bisimulation
invariant fragment of first-order logic.

• We know what basic hybrid logic is: it’s the
bisimulation-with-constants invariant fragment of
first-order logic.

• As we shall learn, hybrid logic with downarrow also
corresponds to a neat fragment of first-order logic: it’s the
first-order logic of locality.

To understand what this means we’re going to need to learn
something about submodels and generated submodels. . .

Towards the logic of locality

• But now for the fundamental question: what exactly is
hybrid logic with downarrow?

• We know what basic modal logic is: it’s the bisimulation
invariant fragment of first-order logic.

• We know what basic hybrid logic is: it’s the
bisimulation-with-constants invariant fragment of
first-order logic.

• As we shall learn, hybrid logic with downarrow also
corresponds to a neat fragment of first-order logic: it’s the
first-order logic of locality.

To understand what this means we’re going to need to learn
something about submodels and generated submodels. . .

30

Towards the logic of locality

• But now for the fundamental question: what exactly is
hybrid logic with downarrow?

• We know what basic modal logic is: it’s the bisimulation
invariant fragment of first-order logic.

• We know what basic hybrid logic is: it’s the
bisimulation-with-constants invariant fragment of
first-order logic.

• As we shall learn, hybrid logic with downarrow also
corresponds to a neat fragment of first-order logic: it’s the
first-order logic of locality.

To understand what this means we’re going to need to learn
something about submodels and generated submodels. . .

Towards the logic of locality

• But now for the fundamental question: what exactly is
hybrid logic with downarrow?

• We know what basic modal logic is: it’s the bisimulation
invariant fragment of first-order logic.

• We know what basic hybrid logic is: it’s the
bisimulation-with-constants invariant fragment of
first-order logic.

• As we shall learn, hybrid logic with downarrow also
corresponds to a neat fragment of first-order logic: it’s the
first-order logic of locality.

To understand what this means we’re going to need to learn
something about submodels and generated submodels. . .

Towards the logic of locality

• But now for the fundamental question: what exactly is
hybrid logic with downarrow?

• We know what basic modal logic is: it’s the bisimulation
invariant fragment of first-order logic.

• We know what basic hybrid logic is: it’s the
bisimulation-with-constants invariant fragment of
first-order logic.

• As we shall learn, hybrid logic with downarrow also
corresponds to a neat fragment of first-order logic: it’s the
first-order logic of locality.

To understand what this means we’re going to need to learn
something about submodels and generated submodels. . .

Towards the logic of locality

• But now for the fundamental question: what exactly is
hybrid logic with downarrow?

• We know what basic modal logic is: it’s the bisimulation
invariant fragment of first-order logic.

• We know what basic hybrid logic is: it’s the
bisimulation-with-constants invariant fragment of
first-order logic.

• As we shall learn, hybrid logic with downarrow also
corresponds to a neat fragment of first-order logic: it’s the
first-order logic of locality.

To understand what this means we’re going to need to learn
something about submodels and generated submodels. . .

Submodels
Suppose M is a model based on this frame (the integers in their usual
order):'

&
$
%

. . . t−3 t−2 t−1 t0 t1 t2 t3 . . .- - - - - - - -

Suppose we form a submodel M− of M by throwing away all the
positive numbers, and restricting the original valuation (whatever it
was) to the remaining numbers:'

&
$
%

. . . t−3 t−2 t−1 t0- - - -

Can an orthodox modal language detect the difference between
the two model?

Yes! M, 0
 ♦> , but M−, 0 6
 ♦>

Submodels
Suppose M is a model based on this frame (the integers in their usual
order):'

&
$
%

. . . t−3 t−2 t−1 t0 t1 t2 t3 . . .- - - - - - - -

Suppose we form a submodel M− of M by throwing away all the
positive numbers, and restricting the original valuation (whatever it
was) to the remaining numbers:'

&
$
%

. . . t−3 t−2 t−1 t0- - - -

Can an orthodox modal language detect the difference between
the two model?

Yes! M, 0
 ♦> , but M−, 0 6
 ♦>

Submodels
Suppose M is a model based on this frame (the integers in their usual
order):'

&
$
%

. . . t−3 t−2 t−1 t0 t1 t2 t3 . . .- - - - - - - -

Suppose we form a submodel M− of M by throwing away all the
positive numbers, and restricting the original valuation (whatever it
was) to the remaining numbers:'

&
$
%

. . . t−3 t−2 t−1 t0- - - -

Can an orthodox modal language detect the difference between
the two model?

Yes! M, 0
 ♦> , but M−, 0 6
 ♦>

Submodels
Suppose M is a model based on this frame (the integers in their usual
order):'

&
$
%

. . . t−3 t−2 t−1 t0 t1 t2 t3 . . .- - - - - - - -

Suppose we form a submodel M− of M by throwing away all the
positive numbers, and restricting the original valuation (whatever it
was) to the remaining numbers:'

&
$
%

. . . t−3 t−2 t−1 t0- - - -

Can an orthodox modal language detect the difference between
the two model?

Yes! M, 0
 ♦> , but M−, 0 6
 ♦>

31

Another submodel
Again M is a model based on the integers in their usual order:'

&
$
%

. . . t−3 t−2 t−1 t0 t1 t2 t3 . . .- - - - - - - -

This time, suppose we form a submodel of M+ of M obtained
by throwing away the negative numbers, and restricting the
original valuation to what remains:'

&

$

%
t0 t1 t2 t3 . . .- - - -

Can an orthodox modal language detect the difference between
the two model?

No! The two models make the exactly the same formulas true.

Another submodel
Again M is a model based on the integers in their usual order:'

&
$
%

. . . t−3 t−2 t−1 t0 t1 t2 t3 . . .- - - - - - - -

This time, suppose we form a submodel of M+ of M obtained
by throwing away the negative numbers, and restricting the
original valuation to what remains:'

&

$

%
t0 t1 t2 t3 . . .- - - -

Can an orthodox modal language detect the difference between
the two model?

No! The two models make the exactly the same formulas true.

Another submodel
Again M is a model based on the integers in their usual order:'

&
$
%

. . . t−3 t−2 t−1 t0 t1 t2 t3 . . .- - - - - - - -

This time, suppose we form a submodel of M+ of M obtained
by throwing away the negative numbers, and restricting the
original valuation to what remains:'

&

$

%
t0 t1 t2 t3 . . .- - - -

Can an orthodox modal language detect the difference between
the two model?

No! The two models make the exactly the same formulas true.

Another submodel
Again M is a model based on the integers in their usual order:'

&
$
%

. . . t−3 t−2 t−1 t0 t1 t2 t3 . . .- - - - - - - -

This time, suppose we form a submodel of M+ of M obtained
by throwing away the negative numbers, and restricting the
original valuation to what remains:'

&

$

%
t0 t1 t2 t3 . . .- - - -

Can an orthodox modal language detect the difference between
the two model?

No! The two models make the exactly the same formulas true.

Why the difference?

• Well, in the second example the two models were bisimilar,
and in the first example they weren’t.

• But there’s a more direct intuition: the second model
consisted of the point 0 and all it’s successors (that is, it’s
the submodel generated by the point 0).

• To put it another way, point generation selects all the
points that are reachable from the evaluation state by
chaining through the relation(s). It selects precisely the
points needed to satisfy a formula at some particular
location, and ignores the rest.

Why the difference?

• Well, in the second example the two models were bisimilar,
and in the first example they weren’t.

• But there’s a more direct intuition: the second model
consisted of the point 0 and all it’s successors (that is, it’s
the submodel generated by the point 0).

• To put it another way, point generation selects all the
points that are reachable from the evaluation state by
chaining through the relation(s). It selects precisely the
points needed to satisfy a formula at some particular
location, and ignores the rest.

Why the difference?

• Well, in the second example the two models were bisimilar,
and in the first example they weren’t.

• But there’s a more direct intuition: the second model
consisted of the point 0 and all it’s successors (that is, it’s
the submodel generated by the point 0).

• To put it another way, point generation selects all the
points that are reachable from the evaluation state by
chaining through the relation(s). It selects precisely the
points needed to satisfy a formula at some particular
location, and ignores the rest.

Why the difference?

• Well, in the second example the two models were bisimilar,
and in the first example they weren’t.

• But there’s a more direct intuition: the second model
consisted of the point 0 and all it’s successors (that is, it’s
the submodel generated by the point 0).

• To put it another way, point generation selects all the
points that are reachable from the evaluation state by
chaining through the relation(s). It selects precisely the
points needed to satisfy a formula at some particular
location, and ignores the rest.

32

Point generated submodels

Point generated submodels Let M = (W,R, V) be a model,
and w ∈W . Let Ww = {w′ ∈W | wR∗w′}, where R∗ is the
reflexive transitive closure of R. Then Mw, the submodel of M
generated by w is the model (Ww, Rw, Vw) where Rw and Vw

are the restrictions of R and V , respectively, to Ww.

Proposition: Let M be a model and Mw any of its point
generated submodels. Then for any orthodox modal formula ϕ,
and any point u in Mw we have

M, u
 ϕ iff Mw, u
 ϕ

In words: model satisfaction is invariant for point generated
submodels.

Proof: By direct induction on the structure of ϕ, or by
observing that point generation always results in bisimilar
models.

Point generated submodels

Point generated submodels Let M = (W,R, V) be a model,
and w ∈W . Let Ww = {w′ ∈W | wR∗w′}, where R∗ is the
reflexive transitive closure of R. Then Mw, the submodel of M
generated by w is the model (Ww, Rw, Vw) where Rw and Vw

are the restrictions of R and V , respectively, to Ww.

Proposition: Let M be a model and Mw any of its point
generated submodels. Then for any orthodox modal formula ϕ,
and any point u in Mw we have

M, u
 ϕ iff Mw, u
 ϕ

In words: model satisfaction is invariant for point generated
submodels.

Proof: By direct induction on the structure of ϕ, or by
observing that point generation always results in bisimilar
models.

Does this invariance hold for all hybrid formulas?

No!

Why not?

Because nominals and free variables may denote non-local
points — that is, points that do not belong to the generated
submodel. And then we can jump non-locally using @.

Let’s restrict our attention to nominal-free sentences. All
occurrences of @ in such formulas are bound by ↓ — surely this
can only lead to “local jumping”?

This idea is correct. How do we prove it?

Does this invariance hold for all hybrid formulas?

No!

Why not?

Because nominals and free variables may denote non-local
points — that is, points that do not belong to the generated
submodel. And then we can jump non-locally using @.

Let’s restrict our attention to nominal-free sentences. All
occurrences of @ in such formulas are bound by ↓ — surely this
can only lead to “local jumping”?

This idea is correct. How do we prove it?

Does this invariance hold for all hybrid formulas?

No!

Why not?

Because nominals and free variables may denote non-local
points — that is, points that do not belong to the generated
submodel. And then we can jump non-locally using @.

Let’s restrict our attention to nominal-free sentences. All
occurrences of @ in such formulas are bound by ↓ — surely this
can only lead to “local jumping”?

This idea is correct. How do we prove it?

Does this invariance hold for all hybrid formulas?

No!

Why not?

Because nominals and free variables may denote non-local
points — that is, points that do not belong to the generated
submodel. And then we can jump non-locally using @.

Let’s restrict our attention to nominal-free sentences. All
occurrences of @ in such formulas are bound by ↓ — surely this
can only lead to “local jumping”?

This idea is correct. How do we prove it?

Does this invariance hold for all hybrid formulas?

No!

Why not?

Because nominals and free variables may denote non-local
points — that is, points that do not belong to the generated
submodel. And then we can jump non-locally using @.

Let’s restrict our attention to nominal-free sentences. All
occurrences of @ in such formulas are bound by ↓ — surely this
can only lead to “local jumping”?

This idea is correct. How do we prove it?

Does this invariance hold for all hybrid formulas?

No!

Why not?

Because nominals and free variables may denote non-local
points — that is, points that do not belong to the generated
submodel. And then we can jump non-locally using @.

Let’s restrict our attention to nominal-free sentences. All
occurrences of @ in such formulas are bound by ↓ — surely this
can only lead to “local jumping”?

This idea is correct. How do we prove it?

33

Nominal-free sentences are invariant under generated
submodels

Lemma: M be a model, let Mw be any of its point generated
submodels, and g be an assignment sending all state variables to
points in Mw. Then for any nominal-free formula ϕ (in the hybrid
language with ↓) and any point u in Mw

M, u, g
 ϕ iff Mw, u, g
 ϕ

Proof: By induction on the structure of ϕ. In the step for
subformulas of the form ↓y.ψ observe that y is assigned a value in
Mw, hence the variant assignment g′ satisfies the inductive
hypothesis.

Corollary: The truth of pure nominal free sentences is invariant
under generated submodels.

Nominal-free sentences are invariant under generated
submodels

Lemma: M be a model, let Mw be any of its point generated
submodels, and g be an assignment sending all state variables to
points in Mw. Then for any nominal-free formula ϕ (in the hybrid
language with ↓) and any point u in Mw

M, u, g
 ϕ iff Mw, u, g
 ϕ

Proof: By induction on the structure of ϕ. In the step for
subformulas of the form ↓y.ψ observe that y is assigned a value in
Mw, hence the variant assignment g′ satisfies the inductive
hypothesis.

Corollary: The truth of pure nominal free sentences is invariant
under generated submodels.

Nominal-free sentences are invariant under generated
submodels

Lemma: M be a model, let Mw be any of its point generated
submodels, and g be an assignment sending all state variables to
points in Mw. Then for any nominal-free formula ϕ (in the hybrid
language with ↓) and any point u in Mw

M, u, g
 ϕ iff Mw, u, g
 ϕ

Proof: By induction on the structure of ϕ. In the step for
subformulas of the form ↓y.ψ observe that y is assigned a value in
Mw, hence the variant assignment g′ satisfies the inductive
hypothesis.

Corollary: The truth of pure nominal free sentences is invariant
under generated submodels.

What about first-order formulas?

• A first-order formula in one free variable ϕ(x) is invariant
under point generated submodels if for any model M, any
of its point generated submodels Mw, and any point u in
Mw, M |= ϕ[u] iff M′ |= ϕ[u].

• Obviously not all first-order formulas are invariant under
generated submodels — first-order logic is clearly non-local!

• But some are. Which ones? That is, what is the first-order
logic of locality?

The logic of locality

Theorem: A first-order formula in one free variable is
invariant for generated submodels iff it is equivalent to the
standard translation of a nominal-free sentence (of the hybrid
language with downarrow).

That is, hybrid logic with downarrow is precisely the first-order
logic of locality.

For the original proof see “Hybrid Logics: Characterization,
Interpolation and Complexity”, Areces, Blackburn and Marx,
Journal of Symbolic Logic, 66:977-1009, 2001.

For an even better proof see Balder ten Cate’s 2004 Amsterdam
PhD thesis, Model Theory for Extended Modal Languages. (We
may discuss this proof on Friday.)

Interpolation

A logic has the interpolation property if whenever

|= ϕ→ ψ

then there is some formula θ containing only non-logical
symbols common to ϕ and ψ such that:

|= ϕ→ θ and |= θ → ψ.

Roughly speaking, if a logic enjoys interpolation, then validity
can always be ‘filtered through’ the common information
bearing elements of the language.

Interpolation in modal logic

• Orthodox propositional modal logic is not particularly well
behaved with respect to interpolation.

• And neither is basic hybrid logic: we’ll now see that
interpolation fails in the basic hybrid language.

• However we’ll immediately be able to ‘repair’ this failure
with ↓. And in fact, ↓ can repair systematically repair
interpolation failures.

Interpolation in modal logic

• Orthodox propositional modal logic is not particularly well
behaved with respect to interpolation.

• And neither is basic hybrid logic: we’ll now see that
interpolation fails in the basic hybrid language.

• However we’ll immediately be able to ‘repair’ this failure
with ↓. And in fact, ↓ can repair systematically repair
interpolation failures.

34

Interpolation in modal logic

• Orthodox propositional modal logic is not particularly well
behaved with respect to interpolation.

• And neither is basic hybrid logic: we’ll now see that
interpolation fails in the basic hybrid language.

• However we’ll immediately be able to ‘repair’ this failure
with ↓. And in fact, ↓ can repair systematically repair
interpolation failures.

Interpolation in modal logic

• Orthodox propositional modal logic is not particularly well
behaved with respect to interpolation.

• And neither is basic hybrid logic: we’ll now see that
interpolation fails in the basic hybrid language.

• However we’ll immediately be able to ‘repair’ this failure
with ↓. And in fact, ↓ can repair systematically repair
interpolation failures.

Interpolation failure in basic hybrid logic

In Lecture 1 we gave a tableau proof of

(♦p ∧ ♦¬p)→ (�(q→ i)→ ♦¬q).

Hence this formula is valid. So if the basic hybrid language
enjoys interpolation then there should exist an interpolating θ
such that

|= (♦p ∧ ♦¬p)→ θ and θ → (�(q→ i)→ ♦¬q).

Note that θ must be in the empty language (that is, it must be
built up solely from > and ⊥) as {p} ∩ {i, q} = ∅.

Interpolation failure in basic hybrid logic

In Lecture 1 we gave a tableau proof of

(♦p ∧ ♦¬p)→ (�(q→ i)→ ♦¬q).

Hence this formula is valid. So if the basic hybrid language
enjoys interpolation then there should exist an interpolating θ
such that

|= (♦p ∧ ♦¬p)→ θ and θ → (�(q→ i)→ ♦¬q).

Note that θ must be in the empty language (that is, it must be
built up solely from > and ⊥) as {p} ∩ {i, q} = ∅.

|= (♦p ∧ ♦¬p)→ θ and |= θ → (�(q→ i)→ ♦¬q)

• What would an interpolant look like? Well, a θ saying “I
have at least two successors” (in the empty language)
would do.

• Now, �⊥ says “I have zero successors” (in the empty
language).

• And ♦> says “I have at least one successor” (in the empty
language).

• But it seems impossible to express “I have at least two
successors” (in the empty language). And there doesn’t
seem to be any other candidate.

• And a simple bisimulation argument shows that no
interpolant exists.

|= (♦p ∧ ♦¬p)→ θ and |= θ → (�(q→ i)→ ♦¬q)

• What would an interpolant look like? Well, a θ saying “I
have at least two successors” (in the empty language)
would do.

• Now, �⊥ says “I have zero successors” (in the empty
language).

• And ♦> says “I have at least one successor” (in the empty
language).

• But it seems impossible to express “I have at least two
successors” (in the empty language). And there doesn’t
seem to be any other candidate.

• And a simple bisimulation argument shows that no
interpolant exists.

|= (♦p ∧ ♦¬p)→ θ and |= θ → (�(q→ i)→ ♦¬q)

• What would an interpolant look like? Well, a θ saying “I
have at least two successors” (in the empty language)
would do.

• Now, �⊥ says “I have zero successors” (in the empty
language).

• And ♦> says “I have at least one successor” (in the empty
language).

• But it seems impossible to express “I have at least two
successors” (in the empty language). And there doesn’t
seem to be any other candidate.

• And a simple bisimulation argument shows that no
interpolant exists.

|= (♦p ∧ ♦¬p)→ θ and |= θ → (�(q→ i)→ ♦¬q)

• What would an interpolant look like? Well, a θ saying “I
have at least two successors” (in the empty language)
would do.

• Now, �⊥ says “I have zero successors” (in the empty
language).

• And ♦> says “I have at least one successor” (in the empty
language).

• But it seems impossible to express “I have at least two
successors” (in the empty language). And there doesn’t
seem to be any other candidate.

• And a simple bisimulation argument shows that no
interpolant exists.

35

|= (♦p ∧ ♦¬p)→ θ and |= θ → (�(q→ i)→ ♦¬q)

• What would an interpolant look like? Well, a θ saying “I
have at least two successors” (in the empty language)
would do.

• Now, �⊥ says “I have zero successors” (in the empty
language).

• And ♦> says “I have at least one successor” (in the empty
language).

• But it seems impossible to express “I have at least two
successors” (in the empty language). And there doesn’t
seem to be any other candidate.

• And a simple bisimulation argument shows that no
interpolant exists.

|= (♦p ∧ ♦¬p)→ θ and |= θ → (�(q→ i)→ ♦¬q)

• What would an interpolant look like? Well, a θ saying “I
have at least two successors” (in the empty language)
would do.

• Now, �⊥ says “I have zero successors” (in the empty
language).

• And ♦> says “I have at least one successor” (in the empty
language).

• But it seems impossible to express “I have at least two
successors” (in the empty language). And there doesn’t
seem to be any other candidate.

• And a simple bisimulation argument shows that no
interpolant exists.

But what if we also had ↓ at our disposal?

• The pure, nominal-free, sentence ↓x.♦↓y.@x♦¬y says that
there are at least two distinct accessible states.

• Intuitively, because ↓ binds variables, we can say a lot
(even in the empty language).

• This suggests that although interpolation fails for the basic
hybrid language, it might holds for the richer language
containing ↓. And in fact this is just the way things work
out. . .

But what if we also had ↓ at our disposal?

• The pure, nominal-free, sentence ↓x.♦↓y.@x♦¬y says that
there are at least two distinct accessible states.

• Intuitively, because ↓ binds variables, we can say a lot
(even in the empty language).

• This suggests that although interpolation fails for the basic
hybrid language, it might holds for the richer language
containing ↓. And in fact this is just the way things work
out. . .

Hybrid logic with ↓ has interpolation

Theorem: Suppose we are working with the hybrid language
with ↓. Then the logic of any class of frames definable by a pure,
nominal-free, sentence of this language enjoys interpolation.

Proof:
For a model-theoretic proof (using a Chang and Keisler style
construction) see “Hybrid Logics: Characterization,
Interpolation and Complexity”, Areces, Blackburn and Marx,
Journal of Symbolic Logic, 66:977-1009, 2001. (You will
probably see this proof on Friday.)

For a constructive proof (using tableau) see “Constructive
interpolants for every bounded fragment definable hybrid logic”,
Blackburn and Marx, Journal of Symbolic Logic, 68(2), 463-480,
2003.

The finite model property

• A language has the finite model property if any satisfiable
formula in the language can be satisfied on a finite model.

• The orthodox propositional modal language has the finite
model property, and so does the basic hybrid language.

• Viewed negatively, this means that these languages are too
weak to define infinite structures.

• Viewed positively, it means that we never need to bother
about with infinite structures when working with these
languages.

First-order logic lacks the finite model property

Consider the following first-order formulas:
• ∀x¬R(x, x) (Irreflexivity)
• ∀x∃yR(x, y) (Unboundedness)
• ∀x∀y(R(x, y) ∧R(y, z)→ R(x, z)) (Transitivity)

Any model for these formulas (for example, the natural
numbers under their usual ordering) is called a unbounded
strict total order. It is not hard to see that any unbounded
strict total order is infinite. So first-order logic lack the finite
model property.

Hybrid logic with ↓ also lacks the finite model property

• More difficult to prove, for we lack the globality of
first-order logic.

• However we can show this using a spypoint argument.
• We shall define a certain sentence and show that all models

satisfying it contain a point s (the spypoint) that can see
strict unbounded total order.

36

A spypoint argument

Consider what any model of the following formula must contain:

@s�� ↓x.@s♦x

∧ @s♦¬s

∧ @s�♦>

∧ @s� ↓x.¬♦x

∧ @s� ↓x.�� ↓y.@x♦y
This formula has some obvious models.

Moreover, any model for this formula must contain a point s
such that the set of points B that s is related to is an
unbounded strict total order — and hence infinite.

Hybrid logic with ↓ is undecidable

• We have stepped over an important boundary: adding ↓
has cost us decidability.

• In fact, even the fragment consisting of pure, nominal-free,
@-free sentences is undecidable.

• This can also be proved using a spypoint argument. Basic
technique is to use the spypoint as a vantage point
surveying a coding of an undecidable problem. (See
“Hybrid Logics: Characterization, Interpolation and
Complexity”, Areces, Blackburn and Marx, Journal of
Symbolic Logic, 66:977-1009, 2001.)

• You’ll probably see this in Thursday’s lecture . . .

Two comments on undecidability

• One interesting decidable fragment is known. Maarten
Marx has shown that the fragment in which � never occurs
under the scope of ↓ is decidable (and in fact
EXPTIME-complete). This fragment can handle some
useful description logic definitions.

• Because downarrow binding is local, we always know which
substitutions we have to perform. There is no need for
Skolem functions or unification. It may be that theorem
provers will perform well on “typical” formulas. The
HyLoRes prover handles downarrow, and it is hoped to
optimize it’s performance for this binder.

Summing up . . .

• We motivated the idea of binding variables to states
locally, and introduced ↓ which lets us dynamically name
the here-and-now.

• By doing this we have captured precisely the first-order
logic of locality. Completeness and interpolation results
hold for all local logics. Although local, the existence of
infinite models can be forced, and the system is
undecidable.

37

